Skip to main content
Log in

Bioaerosol levels and the indoor air quality of laboratories in Bangkok metropolis

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Bioaerosols are major air pollutants commonly found both indoors and outdoors. High exposure levels may result in various adverse health outcomes. Laboratories, which are indoor environments carefully designed for specific purposes, may contain high levels of bioaerosols, which may threaten worker’s health, and contaminate experimental results. This study investigated the levels of bioaerosols (i.e., culturable fungi and bacteria, and fungal spores) in laboratories in the Bangkok metropolitan area. Air samples were collected from 14 Class I and one Class II laboratories by using a single-stage impactor and a VersaTrap spore trap cassette. Colonies were counted after 72 h and 48 h of incubation for culturable fungi and bacteria, respectively. Culturable fungi and fungal spores were identified based on their morphological characteristics. Associations between bioaerosols and indoor air parameters and laboratory characteristics were evaluated. The concentrations (mean ± SD) of culturable bacteria, culturable fungi, and fungal spores were 87.0 ± 97.8 CFU/m3, 294.9 ± 376.1 CFU/m3, and 771.8 ± 545.3 spores/m3, respectively. Aspergillus/Penicillium, ascospores, and Cladosporium were common fungal spore taxa in the laboratories. Culturable fungi significantly increased with the number of staff and visible molds, whereas water leaks and culturable fungi significantly increased fungal spore concentrations. Culturable bacteria were positively associated with the numbers of trash bins and − 80 °C freezers. Although bioaerosol concentrations were considerably lower in the studied laboratories, proper indoor air management is still suggested in order to reduce emissions and exposure. This can help workers avoid adverse health outcomes and reduce the chance of experimental contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, R. I., Miletto, M., Lindow, S. E., Taylor, J. W., & Bruns, T. D. (2014). Airborne bacterial communities in residences: Similarities and differences with fungi. PLoS ONE, 9(3), e91283.

    Article  CAS  Google Scholar 

  • Adams, R. I., Miletto, M., Taylor, J. W., & Bruns, T. D. (2013). Dispersal in microbes: Fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME Journal, 7(7), 1262–1273.

    Article  CAS  Google Scholar 

  • Adhikari, A., Gupta, J., Wilkins, J. R., III, Olds, R. L., Indugula, R., Cho, K. J., et al. (2011). Airborne microorganisms, endotoxin, and (1/3)-b-D-glucan exposure in greenhouses and assessment of respiratory symptoms among workers. Annals of Occupational Hygiene, 55(3), 272–285.

    CAS  Google Scholar 

  • Aira, M.-J., Rodríguez-Rajo, F.-J., Fernández-González, M., Seijo, C., Elvira-Rendueles, B., Abreu, I., et al. (2013). Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993–2009. International Journal of Biometeorology, 57(2), 265–274.

    Article  Google Scholar 

  • Alves, C., Duarte, M., Ferreira, M., Alves, A., Almeida, A., & Cunha, Â. (2016). Air quality in a school with dampness and mould problems. Air Quality, Atmosphere and Health, 9(2), 107–115.

    Article  CAS  Google Scholar 

  • Balasubramanian, R., Nainar, P., & Rajasekar, A. (2012). Airborne bacteria, fungi, and endotoxin levels in residential microenvironments: A case study. Aerobiologia, 28(3), 375–390.

    Article  Google Scholar 

  • Basilico, M.d.l. L. Z, Chiericatti, C., Aringoli, E. E., Althaus, R. L., & Basilico, J. C. (2007). Influence of environmental factors on airborne fungi in houses of Santa Fe City, Argentina. Science of the Total Environment, 376(1–3), 143–150.

    Article  CAS  Google Scholar 

  • Burge, H. A. (2003). Bioaerosols and the scientific method. Annals of Allergy, Asthma & Immunology, 91(3), 217–219.

    Article  Google Scholar 

  • Burge, H. A., & Rogers, C. A. (2000). Outdoor allergens. Environmental Health Perspectives, 108, 653–659.

    CAS  Google Scholar 

  • Chao, H. J., Schwartz, J., Milton, D. K., & Burge, H. A. (2003). The work environment and workers’ health in four large office buildings. Environmental Health Perspectives, 111(9), 1242–1248.

    Article  CAS  Google Scholar 

  • Chen, C.-H., Chao, H. J., Chan, C.-C., Chen, B.-Y., & Guo, Y. L. (2014). Current asthma in schoolchildren is related to fungal spores in classrooms. Chest, 146(1), 123–134.

    Article  Google Scholar 

  • Chen, B.-Y., Chao, H. J., Chan, C.-C., Lee, C.-T., Wu, H.-P., Cheng, T.-J., et al. (2011). Effects of ambient particulate matter and fungal spores on lung function in schoolchildren. Pediatrics, 127(3), e690–e698.

    Article  Google Scholar 

  • Codina, R., Fox, R., Lockey, R., DeMarco, P., & Bagg, A. (2008). Typical levels of airborne fungal spores in houses without obvious moisture problems during a rainy season in Florida, USA. Journal of Investigational Allergology and Clinical Immunology, 18(3), 156–162.

    CAS  Google Scholar 

  • Crawford, J. A., Rosenbaum, P. F., Anagnost, S. E., Hunt, A., & Abraham, J. L. (2015). Indicators of airborne fungal concentrations in urban homes: Understanding the conditions that affect indoor fungal exposures. Science of the Total Environment, 517, 113–124.

    Article  CAS  Google Scholar 

  • Fernández-Rodríguez, S., Sadyś, M., Smith, M., Tormo-Molina, R., Skjøth, C. A., Maya-Manzano, J. M., et al. (2015). Potential sources of airborne Alternaria spp. spores in South-west Spain. Science of the Total Environment, 533, 165–176.

    Article  CAS  Google Scholar 

  • Fernández-Rodríguez, S., Tormo-Molina, R., Maya-Manzano, J. M., Silva-Palacios, I., & Gonzalo-Garijo, Á. (2014). Outdoor airborne fungi captured by viable and nonviable methods. Fungal Ecology, 7, 16–26.

    Article  Google Scholar 

  • Gonçalves, F. L. T., Bauer, H., Cardoso, M. R. A., Pukinskas, S., Matos, D., Melhem, M., et al. (2010). Indoor and outdoor atmospheric fungal spores in the São Paulo metropolitan area (Brazil): Species and numeric concentrations. International Journal of Biometeorology, 54(4), 347–355.

    Article  Google Scholar 

  • Haas, D., Habib, J., Luxner, J., Galler, H., Zarfel, G., Schlacher, R., et al. (2014). Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria. Atmospheric Environment, 98, 640–647.

    Article  CAS  Google Scholar 

  • Hargreaves, M., Parappukkaran, S., Morawska, L., Hitchins, J., He, C., & Gilbert, D. (2003). A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane, Australia. Science of the Total Environment, 312(1–3), 89–101.

    Article  CAS  Google Scholar 

  • Heo, K. J., Lim, C. E., Kim, H. B., & Lee, B. U. (2017). Effects of human activities on concentrations of culturable bioaerosols in indoor air environments. Journal of Aerosol Science, 104, 58–65.

    Article  CAS  Google Scholar 

  • Hsu, N.-Y., Chen, P.-Y., Chang, H.-W., & Su, H.-J. (2011). Changes in profiles of airborne fungi in flooded homes in southern Taiwan after Typhoon Morakot. Science of the Total Environment, 409, 1677–1682.

    Article  CAS  Google Scholar 

  • Hsu, Y.-C., Kung, P.-Y., Wu, T.-N., & Shen, Y.-H. (2012). Characterization of indoor-air bioaerosols in southern Taiwan. Aerosol and Air Quality Research, 12, 651–661.

    Article  CAS  Google Scholar 

  • Hwang, S., Ko, Y., Park, D., & Yoon, C. (2018). Seasonality in airborne bacterial, fungal, and (1 → 3)-β-D-glucan concentrations in two indoor laboratory animal rooms. Journal of Clinical Pathology, 71(1), 59–66.

    Article  CAS  Google Scholar 

  • Hwang, S. H., Lee, I. M., & Yoon, C. S. (2013). Levels of total airborne bacteria, gram-negative bacteria, and endotoxin according to biosafety levels in Korean biosafety laboratories. Human and Ecological Risk Assessment: An International Journal, 19(6), 1576–1585.

    Article  CAS  Google Scholar 

  • Hwang, B. F., Liu, I. P., & Huang, T. P. (2011a). Molds, parental atopy and pediatric incident asthma. Indoor Air, 21(6), 472–478.

    Article  Google Scholar 

  • Hwang, S. H., Park, D. U., Ha, K. C., Cho, H. W., & Yoon, C. S. (2011b). Airborne bacteria concentrations and related factors at university laboratories, hospital diagnostic laboratories and a biowaste site. Journal of Clinical Pathology, 64(3), 261–264.

    Article  Google Scholar 

  • Hwang, S. H., Park, D. U., & Yoon, C. S. (2017). Levels of airborne biological agents and related factors in indoor environments of fish toxicity laboratory. Human and Ecological Risk Assessment: An International Journal, 23(7), 1553–1563.

    Article  CAS  Google Scholar 

  • IAQ Information Centre. (2003). A guide on indoor air quality certification scheme for offices and public places. Environmental Protection Department: The Government of the Hong Kong Special Administrative Region Indoor Air Quality Management Group. http://www.iaq.gov.hk/ Accessed 6 October 2017.

  • Jara, D., Portnoy, J., Dhar, M., & Barnes, C. (2017). Relation of indoor and outdoor airborne fungal spore levels in the Kansas City metropolitan area. Allergy and Asthma Proceedings, 38(2), 130–135.

    Article  Google Scholar 

  • Knudsen, S. M., Gunnarsen, L., & Madsen, A. M. (2017). Airborne fungal species associated with mouldy and non-mouldy buildings—Effects of air change rates, humidity, and air velocity. Building and Environment, 122, 161–170.

    Article  Google Scholar 

  • Lin, Z. Z., Cai, S. F., & Utsugi, W. (2004). An atlas of airborne fungal spores in southern Taiwan. Fengshan: Fengshan Tropical Horticultural Experiment Branch, Taiwan Agricultural Research Institute.

    Google Scholar 

  • Luksamijarulkul, P., Kiennukul, N., & Vatthanasomboon, P. (2014). Laboratory facility design and microbial indoor air quality in selected hospital laboratories. Southeast Asian Journal of Tropical Medcine and Public Health, 45(3), 746–755.

    Google Scholar 

  • Lymperopoulou, D. S., Adams, R. I., & Lindow, S. E. (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and Environmental Microbiology, 82(13), 3822–3833.

    Article  CAS  Google Scholar 

  • Macher, J. (1999). Bioaerosols: Assessment and Control. Cincinnati, OH: ACGIH.

    Google Scholar 

  • Maryam, Z., Rafiqah Azira, M. R., Noor Faizul Hadry, N., Norhidayah, A., & Mohd Shukri, M. A. (2015). Indoor microbial contamination through water mist aerosol at public restaurants. Jurnal Teknologi (Sciences & Engineering), 77(24), 45–50.

    Google Scholar 

  • Muilenberg, M. (1999). A practical guide to aeroallergen identification. American College of Allergy and Immunology Annual Meeting, Chicago.

  • O’Connor, D. J., Sadyś, M., Skjøth, C. A., Healy, D. A., Kennedy, R., & Sodeau, J. R. (2014). Atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores monitored in Cork (Ireland) and Worcester (England) during the summer of 2010. Aerobiologia, 30, 397–411.

    Article  Google Scholar 

  • Rajasekar, A., & Balasubramanian, R. (2011). Assessment of airborne bacteria and fungi in food courts. Building and Environment, 46, 2081–2087.

    Article  Google Scholar 

  • Rathnayake, C. M., Metwali, N., Jayarathne, T., Kettler, J., Huang, Y., Thorne, P. S., et al. (2017). Influence of rain on the abundance of bioaerosols in fine and coarse particles. Atmospheric Chemistry and Physics, 17(3), 2459–2475.

    Article  CAS  Google Scholar 

  • Rimac, D., Macan, J., Varnai, V. M., Vucemilo, M., Matkovic´, K., Prester, L., et al. (2010). Exposure to poultry dust and health effects in poultry workers: impact of mould and mite allergens. International Archives of Occupational and Environmental Health, 83, 9–19.

    Article  CAS  Google Scholar 

  • Rogers, C., Muilenberg, M. (2001). Comprehensive guidelines for the operation of Hirst-type suction bioaerosol samplers. The Pan-American Aerobiology Association.

  • Rosenbaum, P. F., Crawford, J. A., Anagnost, S. E., Wang, C. J. K., Hunt, A., Anbar, R. D., et al. (2010). Indoor airborne fungi and wheeze in the first year of life among a cohort of infants at risk for asthma. Journal of Exposure Science & Environmental Epidemiology, 20, 503–515.

    Article  Google Scholar 

  • Sabariego, S., Guardia, C. D.d.l, & Alba, F. (2000). The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). International Journal of Biometeorology, 44, 1–5.

    Article  CAS  Google Scholar 

  • Sadys, M., Skjøth, C. A., & Kennedy, R. (2014). Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmospheric Environment, 84, 88–99.

    Article  CAS  Google Scholar 

  • Salonen, H., Duchaine, C., Mazaheri, M., Clifford, S., & Morawska, L. (2015). Airborne culturable fungi in naturally ventilated primary school environments in a subtropical climate. Atmospheric Environment, 106, 412–418.

    Article  CAS  Google Scholar 

  • Sautour, M., Sixt, N., Dalle, F., L’Ollivier, C., Fourquenet, V., Calinon, C., et al. (2009). Profiles and seasonal distribution of airborne fungi in indoor and outdoor environments at a French hospital. Science of the Total Environment, 407(12), 3766–3771.

    Article  CAS  Google Scholar 

  • Seo, S. C., Choung, J., Cehn, B., Lindsley, W. G., & Kim, K. (2014). The level of submicron fungal fragments in homes with asthmatic children. Environmental Research, 131, 71–76.

    Article  CAS  Google Scholar 

  • Smith, E. G. (2000). Sampling and identifying allergenic pollens and molds: An illustrated identification manual for air samplers. San Antonio, TX: Blewstone Press.

    Google Scholar 

  • Sordillo, J. E., Alwis, U. K., Hoffman, E., Gold, D. R., & Milton, D. K. (2010). Home characteristics as predictors of bacterial and fungal microbial biomarkers in house dust. Environmental Health Perspectives, 119, 189–195.

    Article  CAS  Google Scholar 

  • Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society, Interface, 6(Suppl 6), S737–S746.

    Google Scholar 

  • Tarigan, Y. G., Chen, R.-Y., Lin, H.-C., Jung, C.-Y., Kallawicha, K., Chang, T.-P., et al. (2017). Fungal bioaerosol exposure and its effects on the health of mushroom and vegetable farm workers in Taiwan. Aerosol and Air Quality Research, 17(8), 2064–2075.

    Article  CAS  Google Scholar 

  • Vesper, S., Barnes, C., Ciaccio, C. E., Johanns, A., Kennedy, K., Murphy, J. S., et al. (2013). Higher Environmental Relative Moldiness Index (ERMI) values measured in homes of asthmatic children in Boston, Kansas City, and San Diego. Journal of Asthma, 50(2), 155–161.

    Article  Google Scholar 

  • Wu, P. C., Li, Y. Y., Chiang, C. M., Huang, C. Y., Lee, C. C., Li, F. C., et al. (2005). Changing microbial concentrations are associated with ventilation performance in Taiwan’s air-conditioned office buildings. Indoor Air, 15(1), 19–26.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant from the Chulabhorn Graduate Institute, Chulabhorn Royal Academy (Grant No. ET-60-16). The authors would like to thank all participating laboratories and staffs for providing information and accommodating us during our air sampling. We also thank Innovative Instrument Co., Ltd. (Thailand), for providing a particle counter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kraiwuth Kallawicha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallawicha, K., Chao, H.J. & Kotchasatan, N. Bioaerosol levels and the indoor air quality of laboratories in Bangkok metropolis. Aerobiologia 35, 1–14 (2019). https://doi.org/10.1007/s10453-018-9535-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-018-9535-5

Keywords

Navigation