Skip to main content
Log in

The log-term of the Bergman kernel of the disc bundle over a homogeneous Hodge manifold

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We show the vanishing of the log-term in the Fefferman expansion of the Bergman kernel of the disk bundle over a compact simply-connected homogeneous Kähler–Einstein manifold of classical type. Our results extends that in (Engliš and Zhang, Math Z 264(4):901–912, 2010) for the case of Hermitian symmetric spaces of compact type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Notice that when D is a bounded domain in a complex Euclidean space the (usual) Bergman Kernel function is defined using an orthonormal basis of the Bergman space of holomorphic functions on D which are \(L^2\)-bounded with respect to the Lebesgue measure. In our situation the Bergman kernel is defined using holomorphic forms on D since there is not a canonical metric on D. As suggested by the referee our definition goes back to Andr\(\acute{e}\) Weil [31]. The two definitions clearly coincide for domains in \(\mathbb {C}^{n}\) via the identification \(f(z) \mapsto f(z) dz_1 \wedge \cdots \wedge dz_n\) of holomorphic functions with holomorphic (n, 0)-forms.

  2. It is worth mentioning that in [6] (see also [15]) it is proven the analogous of Theorem 1.1 for the Szegö kernel, namely the vanishing of the log-term of the Szegö kernel of the disk bundle over a compact homogenous Hodge manifold (not necessarily of classical type).

  3. Some authors (for example [9]) reverse the notation and paint black the roots in \(R_K\).

References

  1. Alekseevsky, D.V.: Flag manifolds. ESI 415 (1997) (preprint)

  2. Alekseevsky, D.V., Perelomov, A.M.: Invariant Kaehler–Einstein metrics on compact homogeneous spaces. Funct. Anal. Appl. 20(3), 171–182 (1986)

    Article  MATH  Google Scholar 

  3. Arezzo, C., Loi, A.: Quantization of Kähler manifolds and the asymptotic expansion of Tian–Yau–Zelditch. J. Geom. Phys. 47, 87–99 (2003)

    Article  MATH  Google Scholar 

  4. Arezzo, C., Loi, A.: Moment maps, scalar curvature and quantization of Kähler manifolds. Commun. Math. Phys. 246, 543–549 (2004)

    Article  MATH  Google Scholar 

  5. Arezzo, C., Loi, A., Zuddas, F.: On homothetic balanced metrics. Ann. Global Anal. Geom. 41(4), 473–491 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arezzo, C., Loi, A., Zuddas, F.: Szego Kernel, regular quantizations and spherical CR-structures. Math. Z. 275, 1207–1216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arvanitoyeorgos, A.: Geometry of flag manifolds. Int. J. Geom. Methods Modern Phys. 3(5–6), 957–974 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Besse, A.L.: Einstein manifolds. Springer, New York (1987)

    Book  MATH  Google Scholar 

  9. Bordemann, M., Forger, M., Roemer, H.: Homogeneous Kaehler manifolds: paving the way towards new supersymmetric sigma models. Commun. Math. Phys. 102, 605–647 (1986)

    Article  MATH  Google Scholar 

  10. Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegö, Journes: Equations aux Dérivées Partielles de Rennes (1975), pp. 123–164. Soc. Math. France, Paris, Astèrisque, No. 3435 (1976)

  11. Boutet de Monvel, L.: Le noyau de Bergman en dimension 2, S\(\acute{e}\)minaire sur les \(\acute{E}\)quations aux D\(\acute{e}\)riv\(\acute{e}\)es Partielles 1987–1988, Exp. no. XXII, p. 13. \(\acute{E}\)cole Polytech., Palaiseau (1988)

  12. Calabi, E.: Isometric imbedding of complex manifolds. Ann. Math. 58(1), 1–23 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  13. Catlin, D.: The Bergman kernel and a theorem of Tian. In: Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math., p. 123. Birkhuser Boston, Boston (1999)

  14. Di Scala, A.J., Hideyuki, H., Loi, A.: Kähler immersions of homogeneous Kähler manifolds into complex space forms. Asian J. Math. 16(3), 479–488 (2012)

    Article  MATH  Google Scholar 

  15. Engliš, M., Zhang, G.: Ramadanov conjecture and line bundles over compact Hermitian symmetric spaces. Math. Z. 264(4), 901–912 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26, 1–65 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces, Pure and Applied Mathematics, vol. 80. Academic Press Inc., New York (Harcourt Brace Jovanovich Publishers) (1978)

  18. Hirachi, K.: The second variation of the Bergman kernel of ellipsoids. Osaka J. Math. 30, 457–473 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140. Birkhaeuser (1996)

  20. Loi, A.: Calabi’s diastasis function for Hermitian symmetric spaces. Differ. Geom. Appl. 24, 311–319 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Loi, A., Mossa, R.: Berezin quantization of homogeneous bounded domains. Geom. Dedicata 161, 119–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Loi, A., Mossa, R.: The diastatic exponential of a symmetric space. Math. Z. 268(3–4), 1057–1068 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, Z.: On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch. Am. J. Math. 122(2), 235–273 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, Z., Tian, G.: The log term of Szegö Kernel. Duke Math. J. 125, 351–387 (2004)

    Article  MATH  Google Scholar 

  25. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels, Progress in Math, vol. 254. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  26. Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217(4), 1756–1815 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nakazawa, N.: Asymptotic expansion of the Bergman kernel for strictly pseudoconvex complete Reinhardt domains in \({\mathbb{C}}^{2}\). Proc. Japan Acad. Ser. A Math. Sci. 66, 39–41 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ramadanov, I.P.: A characterization of the balls in \({\mathbb{C}}^{n}\) by means of the Bergman kernel. C. R. Acad. Bulgare Sci. 34, 927–929 (1981)

    MathSciNet  MATH  Google Scholar 

  29. Zelditch, S.: Szegö kernels and a theorem of Tian Int. Math. Res. Notices 6, 317–331 (1998)

    Article  MATH  Google Scholar 

  30. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32, 99–130 (1990)

    MATH  Google Scholar 

  31. Weil, A.: Introduction à l’\(\acute{e}\)tude des vari\(\acute{e}\)t\(\acute{e}\)s kähl\(\acute{e}\)riennes. Paris Herman (1958)

Download references

Acknowledgments

The authors are indebted to the anonymous referee for his critical remarks and suggestions which led to improvements of the revised version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Loi.

Additional information

The authors Andrea Loi and Roberto Mossa were supported by Prin 2010/11—Varietà reali e complesse: geometria, topologia e analisi armonica—Italy and also by INdAM—GNSAGA—Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni; the third author was supported by the FIRB project 2012 “Geometria Differenziale e Teoria geometrica delle funzioni”.

Appendix A: Classical Lie algebras

Appendix A: Classical Lie algebras

We now describe root systems, root vectors and Dynkin diagram for the classical groups \(G = SU(d), Sp(d), SO(2d), SO(2d+1)\) following [17, Section III.8]. The diagrams are endowed with the equipment \(\Pi _{\mathrm{can}}\) we have used throughout the paper and which we have referred to as the canonical equipment.

Example A.1

If \(G= SU(d)\), \(\mathfrak {g}^{{\mathbb C}} = sl(d, {\mathbb C})\) is the set of matrices with null trace, and let \(\mathfrak {h}^{{\mathbb C}}\) be given by the diagonal matrices in \(sl(d, {\mathbb C})\); for any \(H = \mathrm {diag\;}(h_1, \ldots , h_d)\) let \(e_i(H) = h_i\): then the root system is \(R = \{ e_i - e_j \ | \ i \ne j \}\) and \(E_{\alpha }\), \(\alpha = e_i - e_j\), is the matrix \(E_{ij}\) having 1 in the ij place and 0 anywhere else. The Killing form B satisfies \(B(X,Y)= 2d \mathrm {tr}(XY)\) for all \(X, Y \in sl(d, {\mathbb C})\). The canonical basis is

$$\begin{aligned} \Pi _{\mathrm{can}} = \{ \alpha _1 = e_1 - e_2, \ldots , \alpha _{d-1} = e_{d-1} - e_d \}. \end{aligned}$$

The Dynkin diagram, with this equipment, is

$$\begin{aligned} \underset{\begin{array}{c} \alpha _1 \end{array}}{\circ } - \underset{\begin{array}{c} \alpha _2 \end{array}}{\circ } - \cdots - \underset{\begin{array}{c} \alpha _{d-2} \end{array}}{\circ } - \underset{\begin{array}{c} \alpha _{d-1} \end{array}}{\circ } \\ \end{aligned}$$

Example A.2

For \(G= Sp(d)\), \(\mathfrak {g}^{{\mathbb C}} = sp(d, {\mathbb C})\) is the set of \(2d \times 2d\) block matrices of the kind \( \left( \begin{array}{ll} Z_1 &{} Z_2 \\ Z_3 &{} -{}^T Z_1 \\ \end{array} \right) \), where \(Z_2, Z_3\) are symmetric. Let the Cartan subalgebra \(\mathfrak {h}^{{\mathbb C}}\) be given by diagonal matrices \(H = \mathrm {diag\;}(h_1, \ldots , h_d, -h_1, \ldots , -h_d)\) in \(sp(d, {\mathbb C})\), and if for any such H we have \(e_i(H) = h_i\), \(i=1, \ldots , d\), then the root system is \(R = \{ \pm e_i \pm e_j \}\) (the case \(i=j\) is allowed when the signs are equal). The root vector \(E_{\alpha }\) is given by \(\left( \begin{array}{ll} E_{ij} &{} 0 \\ 0 &{} -E_{ji} \\ \end{array} \right) \) if \(\alpha = e_i - e_j\), \(\left( \begin{array}{cc} 0 &{} E_{ij} + E_{ji} \\ 0 &{} 0 \\ \end{array} \right) \) if \(\alpha = e_i + e_j\) and \(\left( \begin{array}{ll} 0 &{} 0 \\ E_{ij} + E_{ji} &{} 0 \\ \end{array} \right) \) if \(\alpha = -e_i - e_j\) and the Killing form B is given by \(B(X,Y)= 2(d+1) \mathrm {tr}(XY)\) for all \(X, Y \in sp(d, {\mathbb C})\).

The canonical basis is given by

$$\begin{aligned} \Pi _{\mathrm{can}} = \{ \alpha _1 = e_1 - e_2, \ldots , \alpha _{d-1} = e_{d-1} - e_d, \alpha _d = 2 e_d \}. \end{aligned}$$

The Dynkin diagram, with this equipment, is

$$\begin{aligned} \underset{\begin{array}{c} \alpha _1 \end{array}}{\circ } - \underset{\begin{array}{c} \alpha _2 \end{array}}{\circ } - \cdots - \underset{\begin{array}{c} \alpha _{d-1} \end{array}}{\circ } \Leftarrow \underset{\begin{array}{c} \alpha _d \end{array}}{\circ } \end{aligned}$$

Example A.3

Let \(G= SO(2d)\). Here and throughout the paper we identify the complexification \(SO(2d, {\mathbb C})\) with the subgroup of \(GL(2d, {\mathbb C})\) leaving invariant the quadratic form \(z_1 z_{d+1} + \cdots + z_d z_{2d}\). Then \(\mathfrak {g}^{{\mathbb C}} = so(2d, {\mathbb C})\) is the set of \(2d \times 2d\) block matrices of the kind \(\left( \begin{array}{cc} Z_1 &{} Z_2 \\ Z_3 &{} -{}^T Z_1 \\ \end{array} \right) \), where \(Z_2, Z_3\) are skew-symmetric. Let the Cartan subalgebra \(\mathfrak {h}^{{\mathbb C}}\) be given by diagonal matrices \(H = \mathrm {diag\;}(h_1, \ldots , h_d, -h_1, \ldots , -h_d)\) in \(so(2d, {\mathbb C})\), and if for any such H we have \(e_i(H) = h_i\), \(i=1, \ldots , d\), then the root system is \(R = \{ \pm e_i \pm e_j \ (i \ne j) \}\). The root vector \(E_{\alpha }\) is given by \(\left( \begin{array}{ll} E_{ij} &{} 0 \\ 0 &{} -E_{ji} \\ \end{array} \right) \) if \(\alpha = e_i - e_j\), \(\left( \begin{array}{ll} 0 &{} E_{ij} - E_{ji} \\ 0 &{} 0 \\ \end{array} \right) \) if \(\alpha = e_i + e_j\) (\(i<j\)) and \(\left( \begin{array}{ll} 0 &{} 0 \\ E_{ij} - E_{ji} &{} 0 \\ \end{array} \right) \) if \(\alpha = -e_i - e_j\) (\(i<j\)) and the Killing form B is given by \(B(X, Y) =2(d-1)\mathrm {tr}(XY)\) for all \(X ,Y \in so(2d, {\mathbb C})\).

The canonical basis is given by

$$\begin{aligned} \Pi _{\mathrm{can}} = \{ \alpha _1 = e_1 - e_2, \ldots , \alpha _{d-1} = e_{d-1} - e_d, \alpha _d = e_{d-1} + e_d \}. \end{aligned}$$

The Dynkin diagram, with this equipment, is

$$\begin{aligned} \underset{\begin{array}{c} \alpha _1 \end{array}}{\circ } - \underset{\begin{array}{c} \alpha _2 \end{array}}{\circ } - \cdots - \underset{\begin{array}{c} \alpha _{d-2} \end{array}}{\overset{\overset{\textstyle \circ _{\alpha _d}}{\textstyle \vert }}{\circ }} \,-\, \underset{\begin{array}{c} \alpha _{d-1} \end{array}}{\circ } \end{aligned}$$

Example A.4

Let \(G= SO(2d+1)\). Here and throughout the paper we identify the complexification \(SO(2d+1, {\mathbb C})\) with the subgroup of \(GL(2d+1, {\mathbb C})\) leaving invariant the quadratic form \(2(z_1 z_{d+1} + \cdots + z_d z_{2d}) + z_{2d+1}\). Then \(\mathfrak {g}^{{\mathbb C}} = so(2d+1, {\mathbb C})\) is the set of \((2d+1) \times (2d+1)\) block matrices of the kind \(\left( \begin{array}{lll} Z_1 &{} Z_2 &{} u \\ Z_3 &{} -{}^T Z_1 &{} v \\ -{}^T v &{} -{}^T u &{} 0 \end{array} \right) \), where \(Z_2, Z_3\) are skew-symmetric and \(u, v \in {\mathbb C}^d\). Let the Cartan subalgebra \(\mathfrak {h}^{{\mathbb C}}\) be given by diagonal matrices \(H = \mathrm {diag\;}(h_1, \ldots , h_d, -h_1, \ldots , -h_d, 0)\) in \(so(2d+1, {\mathbb C})\), and if for any such H we have \(e_i(H) = h_i\), \(i=1, \ldots , d\), then the root system is \(R = \{ \pm e_i \pm e_j \ (i \ne j), \pm e_i \}\). The root vector \(E_{\alpha }\) is given by \(\left( \begin{array}{lll} E_{ij} &{} 0 &{} 0 \\ 0 &{} -E_{ji} &{} 0\\ 0 &{} 0 &{} 0 \end{array} \right) \) if \(\alpha = e_i - e_j\), \(\left( \begin{array}{lll} 0 &{} E_{ij} - E_{ji} &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \end{array} \right) \) if \(\alpha = e_i + e_j\) (\(i<j\)), \(\left( \begin{array}{lll} 0 &{} 0 &{} 0 \\ E_{ij} - E_{ji} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \end{array} \right) \) if \(\alpha = -e_i - e_j\) (\(i<j\)), \(\left( \begin{array}{lll} 0 &{} 0 &{} E_i \\ 0 &{} 0 &{} 0 \\ 0 &{} -{}^T E_i &{} 0 \end{array} \right) \) if \(\alpha = e_i \) and \(\left( \begin{array}{lll} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} E_i \\ -{}^T E_i &{} 0 &{} 0 \end{array} \right) \) if \(\alpha = - e_i \) (being \(E_i\) the ith vector of the canonical basis of \({\mathbb C}^d\)) and the Killing form B is given by \(B(X, Y) =(2d-1)\mathrm {tr}(XY)\) for all \(X ,Y \in so(2d+1, {\mathbb C})\).

The canonical basis is given by

$$\begin{aligned} \Pi _{\mathrm{can}} = \{ \alpha _1 = e_1 - e_2, \ldots , \alpha _{d-1} = e_{d-1} - e_d, \alpha _d = e_d \}. \end{aligned}$$

The Dynkin diagram, with this equipment, is

$$\begin{aligned}&\underset{\begin{array}{c} \alpha _1 \end{array}}{\circ } - \underset{\begin{array}{c} \alpha _2 \end{array}}{\circ } - \cdots - \underset{\begin{array}{c} \alpha _{d-1} \end{array}}{\circ } \Rightarrow \underset{\begin{array}{c} \alpha _d \end{array}}{\circ } \end{aligned}$$

Remark A.5

In each of the above examples, the given Cartan subalgebra is the complexification of the Lie algebra of a maximal torus T in the compact group G (more precisely, for \(G = SU(d), Sp(d), SO(2d), SO(2d+1)\) we have, respectively, \(T = \mathrm {diag\;}(e^{i \theta _1}, \ldots , e^{i \theta _d}), \mathrm {diag\;}(e^{i \theta _1}, \ldots , e^{i \theta _d}, e^{-i \theta _1}, \ldots , e^{-i \theta _d})\), \(\mathrm {diag\;}(e^{i \theta _1}, \ldots , e^{i \theta _d}, e^{-i \theta _1}, \ldots , e^{-i \theta _d})\), \(\mathrm {diag\;}(e^{i \theta _1}, \ldots , e^{i \theta _d}, e^{-i \theta _1}, \ldots , e^{-i \theta _d}, 1)\)). In general, given a maximal torus T in a compact connected Lie group G, its Lie algebra \(\mathfrak {t}\) is a maximal abelian subalgebra of \(\mathfrak {g}\) and its complexification \(\mathfrak {t}^{{\mathbb C}}\) is a Cartan subalgebra of the complex Lie algebra \(\mathfrak {g}^{{\mathbb C}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loi, A., Mossa, R. & Zuddas, F. The log-term of the Bergman kernel of the disc bundle over a homogeneous Hodge manifold. Ann Glob Anal Geom 51, 35–51 (2017). https://doi.org/10.1007/s10455-016-9522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-016-9522-4

Keywords

Mathematics Subject Classification

Navigation