Skip to main content
Log in

The Weyl functional on 4-manifolds of positive Yamabe invariant

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

It is shown that on every closed oriented Riemannian 4-manifold (Mg) with positive scalar curvature,

$$\begin{aligned} \int _M|W^+_g|^2d\mu _{g}\ge 2\pi ^2(2\chi (M)+3\tau (M))-\frac{8\pi ^2}{|\pi _1(M)|}, \end{aligned}$$

where \(W^+_g\), \(\chi (M)\) and \(\tau (M)\), respectively, denote the self-dual Weyl tensor of g, the Euler characteristic and the signature of M. This generalizes Gursky’s inequality [15] for the case of \(b_1(M)>0\) in a much simpler way. We also extend all such lower bounds of the Weyl functional to 4-orbifolds including Gursky’s inequalities for the case of \(b_2^+(M)>0\) or \(\delta _gW^+_g=0\) and obtain topological obstructions to the existence of self-dual orbifold metrics of positive scalar curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the strong convergence in \(L^2\), we used the Rellich–Kondrakov theorem which holds still on orbifolds. It can be easily derived by using the partition of unity. For a proof, one may refer to [12].

  2. The theorem is originally stated for manifolds, but the proof works well for orbifolds too. If at least one of \(Y(M_1,[g_1])\) and \(Y(M_2,[g_2])\) is positive, then \(Y(M_1\amalg M_2, [g_1\amalg g_2])=\min (Y(M_1,[g_1]),Y(M_2,[g_2]))\).

  3. It’s because any Kähler metric on a 4-orbifold satisfies \(|s|=2\sqrt{6}|W^+|\).

  4. In \(\mathbb Z_2*\mathbb Z_2=\langle a,b|a^2=b^2=1\rangle\), the subgroup generated by \((ab)^d\) for \(d\in \mathbb N\) has index 2d.

  5. When \(k=2\), we have already seen it in the previous subsection. Similarly when \(k\ge 3\), if \(a_i\) denotes a generator of the i-th \(\mathbb Z_2\), then the subgroup generated by \(\{(a_1a_2)^d,a_3,\cdots ,a_k\}\) for \(d\in \mathbb N\) has index 2d.

  6. Many of them are found to have positive Yamabe constant. See [7, 40].

References

  1. Akutagawa, K.: Computations of the orbifold Yamabe invariant. Math. Z. 271, 611–625 (2012)

    Article  MathSciNet  Google Scholar 

  2. Akutagawa, K., Botvinnik, B., Kobayahshi, O., Seshadri, H.: The Weyl functional near the Yamabe invariant. J. Geom. Anal. 13, 1–20 (2003)

    Article  MathSciNet  Google Scholar 

  3. Atiyah, M., Patodi, V., Singer, I.: Spectral assymetry and Riemannian geometry. II. Math. Proc. Camb. Phil. Soc. 78, 405–432 (1975)

    Article  Google Scholar 

  4. Baily, W.L.: The decomposition theorem for \(V\)-manifolds. Amer. J. Math. 78(4), 862–888 (1956)

    Article  MathSciNet  Google Scholar 

  5. Besse, A.L.: Einstein Manifolds. Springer-Verlag, New York (1987)

    Book  Google Scholar 

  6. Bour, V., Carron, G.: Optimal integral pinching results. Ann. Sci. Éc. Norm. Sup. 48, 41–70 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bryant, R.L.: Bochner-Kähler metrics. J. Amer. Math. Soc. 14, 623–715 (2001)

    Article  MathSciNet  Google Scholar 

  8. Chang, S.Y., Gursky, M., Yang, P.: An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature. Ann. Math. 155, 709–787 (2002)

    Article  MathSciNet  Google Scholar 

  9. Chang, S.Y., Gursky, M., Yang, P.: A conformally invariant sphere theorem in four dimensions. Publ. Math. Inst. Hautes Études Sci. 98, 105–143 (2003)

    Article  MathSciNet  Google Scholar 

  10. Choi, S.: Geometric Structures on 2-orbifolds: Exploration of Discrete Symmetry, MSJ Memoirs 27. Mathematical Society of Japan (2012)

  11. Derdziński, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Comp. Math. 49, 405–433 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Farsi, C.: Orbifold spectral theory. Rocky. Mtn. J. Math. 31, 215–235 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Fu, H.P.: Four manifolds with postive Yamabe constant. Pacific J. Math. 296(1), 79–104 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gromov, M., Lawson, H.B.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. 111, 423–434 (1980)

    Article  MathSciNet  Google Scholar 

  15. Gursky, M.J.: The Weyl functional, de Rhamm cohomology, and Kähler-Einstein metrics. Ann. Math. 148, 315–337 (1998)

    Article  MathSciNet  Google Scholar 

  16. Gursky, M.J.: Four-manifolds with \(\delta W^+=0\) and Einstein constants of the sphere. Math. Ann. 318, 417–431 (2000)

    Article  MathSciNet  Google Scholar 

  17. Gursky, M.J., LeBrun, C.: On Einstein manifolds of positive sectional curvature. Ann. Glob. Anal. geom. 17, 315–328 (1999)

    Article  MathSciNet  Google Scholar 

  18. Seshadri, H.: Weyl curvature and the Euler characteristic in dimension four. Diff. Geom. Appl. 24, 172–177 (2006)

    Article  MathSciNet  Google Scholar 

  19. Hebey, E., Vaugon, M.: Le problème de Yamabe équivariant. Bull. Sci. Math. 117, 241–286 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Hitchin, N.: Einstein metrics and the eta-invariant. Boll. Unione Mat. Ital. B 11(supp. 2), 95–105 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Itoh, M.: The modified Yamabe problem and geometry of modified scalar curvatures. J. Geom. Anal. 15, 63–81 (2005)

    Article  MathSciNet  Google Scholar 

  22. Calderbank, D.M.J., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173, 214–255 (2000)

    Article  MathSciNet  Google Scholar 

  23. Kobayashi, O.: On a conformally invariant functional of the space of Riemannian mettrics. J. Math. Soc. Japan 37, 373–389 (1985)

    Article  MathSciNet  Google Scholar 

  24. Kobayashi, O.: Scalar curvature of a metric with unit volume. Math. Ann. 279, 253–265 (1987)

    Article  MathSciNet  Google Scholar 

  25. LeBrun, C.: Counter-examples to the generalized positive action conjecture. Comm. Math. Phys. 118, 591–596 (1988)

    Article  MathSciNet  Google Scholar 

  26. LeBrun, C.: Kodaira dimension and the Yamabe problem. Comm. Anal. Geom. 7, 133–156 (1999)

    Article  MathSciNet  Google Scholar 

  27. LeBrun, C.: Weyl curvature, Del Pezzo surfaces, and almost-Kähler geometry. J. Geom. Anal. 25, 1744–1772 (2015)

    Article  MathSciNet  Google Scholar 

  28. Lee, J., Parker, T.: The Yamabe problem. Bull. Amer. Math. Soc. 17(1), 37–91 (1987)

    Article  MathSciNet  Google Scholar 

  29. Lock, M., Viaclovsky, J.: Quotient singularities, eta invariants, and self-dual metrics. Geom. Top. 20, 1773–1806 (2016)

    Article  MathSciNet  Google Scholar 

  30. Madani, F.: Equivariant Yamabe problem and Hebey-Vaugon conjecture. J. Funct. Anal. 258, 241–254 (2010)

    Article  MathSciNet  Google Scholar 

  31. Malcev, A.I., On the faithful representation of infinite groups by matrices, Mat. Sb. 8, : 405–422; English traslation. Amer. Math. Soc. Transl. (1965) 45(2), 1–18 (1940)

  32. Nakajima, H.: Self-duality of ALE Ricci-flat 4-manifolds and positive mass theorem, In : Recent topics in differential and analytic geometry, Adv. Stud. Pure Math. 18, Academic Press, (1990), 385-396

  33. Penrose, R.: The Road to Reality : A Complete Guide to the Laws of the Universe. Jonathan Cape, London (2004)

    MATH  Google Scholar 

  34. Satake, I.: On a generalization of the notion of manifold. Proc. Natl. Acad. Sci. USA 42(6), 359–363 (1956)

    Article  MathSciNet  Google Scholar 

  35. Satake, I.: The Gauss-Bonnet theorem for \(V\)-manifolds. J. Math. Soc. Japan 94, 464–476 (1957)

    MathSciNet  MATH  Google Scholar 

  36. Sung, C.: Surgery and equivariant Yamabe invaiant. Diff. Geom. Appl. 24, 271–287 (2006)

    Article  Google Scholar 

  37. Thurston, W.: Geometry and Topology of 3-Manifolds. Princeton univerity, Lecture notes (1979)

  38. Viaclovsky, J.: An index theorem on anti-self-dual orbifolds. Int. Math. Res. Not. 2013, 3911–3930 (2013)

    Article  MathSciNet  Google Scholar 

  39. Viaclovsky, J.: Monopole metrics and the orbifold Yamabe problem. Ann. Inst. Fourier 60, 2503–2543 (2010)

    Article  MathSciNet  Google Scholar 

  40. Viaclovsky, J.: Einstein metrics and Yamabe invariants of weighted projective spaces. Tohoku Math. J. 65, 297–311 (2013)

    Article  MathSciNet  Google Scholar 

  41. Witten, E.: Topological gravity. Phys. Lett. B 206, 601–606 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to give special thanks to colleagues and students of KNUE where the first idea of this work was conceived and also researchers at KIAS for sharing fellowship through mathematics. It is our pleasure to express sincere thanks to Claude LeBrun for kind suggestions leading to the improvement of the earlier version of this paper, particularly on the residually finite fundamental group and the Lefschetz fixed point theorem. We are also grateful to the anonymous referee for helpful remarks in examples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanyoung Sung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, C. The Weyl functional on 4-manifolds of positive Yamabe invariant. Ann Glob Anal Geom 60, 767–805 (2021). https://doi.org/10.1007/s10455-021-09798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-021-09798-x

Keywords

Mathematics Subject Classification

Navigation