Skip to main content

Advertisement

Log in

The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Agroforestry systems can mitigate greenhouse gas (GHG) emissions, conserve biodiversity and generate income. Whereas the provision of ecosystem services by agroforestry is well documented, the functional relationships between species composition, diversity and carbon (C)-storage remain uncertain. This study aimed to analyze the effects of management (conventional vs. organic), woody plant diversity and plant composition on aboveground and belowground C-storage in coffee agroforestry systems. It was expected that organic farms would store more C, and that an increase in plant diversity would enhance C-storage due to complementarity effects. Additionally, it was expected that steep slopes decrease C-storage as a result of topsoil erosion. Woody plants were identified on 1 ha plots within 14 coffee farms (7 conventional and 7 organic). C-stocks in trees, coffee plants and roots were estimated from allometric equations. C-stocks in litter and topsoil (0–25 cm) were estimated by sampling. On average, farms stored 93 ± 29 Mg C ha−1. Soil organic carbon accounted for 69 % of total C. Total C-stocks were 43 % higher on organic farms than on conventional farms (P < 0.05). Conventional and organic farms differed in vegetation structure, but not in species diversity. It was found that the combined effect of farm type, species richness, species composition and slope explained 83 % of the variation in total C-storage across all farms (P < 0.001). Coffee agroforestry in general and organic farms in particular may contribute to GHG mitigation and biodiversity conservation in a synergistic manner which has implications for the effective allocation of resources for conservation and climate change mitigation strategies in the agricultural sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27

    Article  CAS  Google Scholar 

  • Avila G, Jiménez F, Beer J, Gómez M, Ibrahim M (2001) Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agroforestería en la Américas 8:32–35

    Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134. Food and Agriculture Organization of the United Nations, Rome

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  PubMed  CAS  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, TerSteege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367

    Article  PubMed  Google Scholar 

  • Cordero J, Boshier DH (eds) (2003) Arboles de Centroamérica: Un manual para extensionistas. Oxford Forestry Institute, Oxford

    Google Scholar 

  • De Melo FVE, Abarca-Monge S (2008) Cafetales para servicios ecosistémicos, con énfasis en el potencial de sumideros de carbono. Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba

    Google Scholar 

  • Donald PF (2004) Biodiversity impacts of some agricultural commodity production systems. Conserv Biol 18:17–37

    Article  Google Scholar 

  • Dossa EL, Fernandes ECM, Reid WS, Ezui K (2008) Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor Syst 72:103–115

    Article  Google Scholar 

  • ESRI (2006) ArcGIS 9.2. Environmental Research Institute Inc., Redlands

  • FAO (2007) The state of food and agriculture. FAO Agriculture Series No. 38. Food and Agriculture Organization of the United Nations, Rome

  • Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. For Ecol Manag 90:59–87

    Article  Google Scholar 

  • Flores-Vindas E, Obando-Vargas G (2003) Árboles del Trópico Húmedo: Importancia socioeconómica. Editoríal Tecnológica de Costa Rica, Cartago

    Google Scholar 

  • Fridley JD (2001) The influence of species diversity on ecosystem productivity: how, where, and why? Oikos 93:514–526

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity—frontiers in measurement and assessment. Oxford University Press, Oxford, pp 39–54

    Google Scholar 

  • Gotelli NJ, Entsminger GL (2001) EcoSim: Null models software for ecology. Version 7.0. Acquired Intelligence Inc. & Kesey-Bear. http://homepages.together.net/~gentsmin/ecosim.htm

  • Haggar J, Barrios M, Bolaños M, Merlo M, Moraga P, Munguia R, Ponce A, Romero S, Soto G, Staver C, De Melo Filho Virginio E (2011) Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor Syst 82:285–301

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1). http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Hartemink AE (2006) Soil erosion: perennial crop plantations. In: Lal R (ed) Encyclopedia of soil science, 2nd edn. CRC Press, Boca Raton, pp 1613–1617

    Google Scholar 

  • Henry M, Tittonell P, Manlay RJ, Bernoux M, Albrecht A, Vanlauwe B (2009) Biodiveristy, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agric Ecosyst Environ 129:238–252

    Article  CAS  Google Scholar 

  • IGNCR (1991) Hoja 3346-III-18. Hornos, and Hoja 3346-III, Morazán. Instituto Geográfico Nacional de Costa Rica, San José I

  • IGNCR (2008) Hoja 3345-IV-2 Cuajiniquil, Hoja 3346-III-18 Hornos, Hoja 3346-III-22 Morazan, Hoja 3346-III-23 Eulalia. Instituto Geográfico Nacional de Costa Rica, San José

    Google Scholar 

  • ITCR (2008) Costa Rica Atlas 2008. Escuela de Ingeniera Forestal, Laboratorio de Sistemas de Información Geográfica, Instituto Tecnológico de Costa Rica, Cartago

    Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10

    Article  Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a smallscale carbon sink project. For Ecol Manage 246:208–221

    Article  Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Addison Wesley Educational Publishers, Menlo Park

    Google Scholar 

  • MAG (2001) Decreto N° 29782-Ministerio de Agricultura y Ganadería-Reglamento de agricultura orgánica. La Gaceta N° 179, San José

  • Martinez-Torres ME (2008) The benefits and sustainability of organic farming by peasant coffee farmers in Chiapas, Mexico. In: Bacon CM, Méndez VE, Gliessman SR, Goodman D, Fox JA (eds) Confronting the coffee crisis—Fairtrade, sustainable livelihoods and ecosystems in Mexico and Central America. MIT Press, Cambridge, pp 99–126

    Google Scholar 

  • Medina-Fernandez BY, Muñoz-Astaíza CY, Haggar J, Aguilar RM (2006) Metodología para la evaluación de servicios ambientales. Anacafé, Guatemala and Foreign and Commonwealth Office, London

    Google Scholar 

  • Mena-Mosquera VE (2008) Relación entre el carbono almacenado en la biomasa total y la composición fisionómica de la vegetación en los sistemas agroforestales con café y en bosques secundarios del Corredor Biológico Volcánica Central-Talamanca, Costa Rica. Master thesis. Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba

  • Muschler RG (2000) Árboles en cafetales. Modulo de enseñanza Agroforestal No. 5. Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree database: a tree reference and selection guide version 4.0. http://www.worldagroforestry.org/af/treedb/

  • Payan F, Jones DL, Beer J, Harmand J-M (2009) Soil characteristics below Erythrina poeppigiana in organic and conventional Costa Rican coffee plantations. Agrofor Syst 76:81–93

    Article  Google Scholar 

  • Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (eds) (2003) Intergovernmental Panel on Climate Change—good practices guidance for land use, land use change and forestry. Institute for Global Environmental Strategies, Kanagawa

    Google Scholar 

  • Perfecto I, Mas A, Dietsch T, Vandermeer J (2003) Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico. Biodivers Conserv 12:1239–1252

    Article  Google Scholar 

  • Philpott SM, Bichier P, Rice RA, Greenberg R (2008) Biodiversity conservation, yield, and alternative products in coffee agroecosystems in Sumatra, Indonesia. Biodivers Conserv 17:1805–1820

    Article  Google Scholar 

  • Pimentel D, Hepperly P, Hanson J, Douds D, Seidel R (2005) Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience 55:573–582

    Article  Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231

    Article  CAS  Google Scholar 

  • Saha SK, Nair PKR, Nair VD, Kumar BM (2009) Soil carbon stocks in relation to plant diversity of homegardens in Kerala, India. Agrofor Syst 76:53–65

    Article  Google Scholar 

  • Salgado-Vasquez (2010) Fijación de carbono en biomasa aérea y rentabilidad financiera de sistemas agroforestales con café en Turrialba, Costa Rica y Masatepe, Nicaragua. Master thesis. Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba

  • Sanderman J, Baldock JA (2010) Accounting for soil carbon sequestration in national inventories: a soil scientists perspective. Environ Res Lett 5:034003

    Article  Google Scholar 

  • SAS (2007) JMP 7.0. SAS Institute, Cary

  • Segura M, Kanninen M, Suárez D (2006) Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor Syst 68:143–150

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 498–540

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Phil Trans R Soc B 363:789–813

    Article  PubMed  CAS  Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J, Jimenez-Ferrer G, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51

    Article  Google Scholar 

  • Spehn EM, Hector A, Hoshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Bejerkuhnlein C, Caldeira MC, Diemer M, Mimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mudler CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze ED, Siamantziouras ASD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecol Monogr 75:37–63

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  PubMed  CAS  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • USDA (2000) United States Department of Agriculture—National Organic Program. Fed Reg 65:80548–80684

    Google Scholar 

  • Vandermeer J (1995) The ecological basis of alternative agriculture. Annu Rev Ecol Syst 26:201–221

    Article  Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) (2000) Land use, Land use change and forestry. IPCC special report. Cambridge University Press, Cambridge

    Google Scholar 

  • Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38:287–301

    Article  Google Scholar 

  • Youkhana A, Idol T (2009) Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Biol Biochem 41:2527–2534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank CoopeAtenas and APROCAFE for their friendly cooperation throughout this study. I am very grateful for the advice on data analysis from Gerardo Avalos. John DeLeo provided technical support for locating and mapping the study plots. The following SFS students collaborated in data collection and laboratory work: Abby Conroy, Rose Mankiewicz, Matt Tannenbaum, Jesi Felton, Jeff Desmarais, Lizzie Fox, Jeremy Weyl, Shannon Zaret, Dan Silvia, Brian Waterman, Alyssa Inman, Carolyn Chu, Chris Wagner, Patrick Boleman, Brian Gaulzetti, Chamae Monroe, Eddie Miller, Kalyn Campbell, Tessa Sanchez, Angela Marshall, Abby Beissinger, Elena Neibaur, Jacqueline Ford, Jeremy Thweatt, Elizabeth Friedrich, Marta Behling, Sheila Jarnes, Thomas Beneke, Anjel Carbajal, Anna Farb, Eunice Ko, Jennifer Burns, Julia VanderWoude, Elizabeth Keeffe, Matthew Gibbs, Rachael Wright, Romina Clemente, Beatriz Luraschi, Alexandra Beskrowni, Sarah Cafran, Daniel Grover, Miriam Gunderson, Samantha John, Erin Johnson, Caitlin Kirk, Pin Pravalprukskul and Radost Stanimirova. I am especially grateful for the invaluable assistance in the field from Mark Bennet. Rafael Acuña helped with plant identification at the University of Costa Rica. I would further like to thank Gerardo Avalos, Kate Henderson and three anonymous reviewers for their comments on the manuscript. Ana Contessa helped with the farmer interviews. I gratefully acknowledge the key financial and logistical support provided by the School for Field Studies (SFS) Center for Sustainable Development Studies in Atenas, Costa Rica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Häger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häger, A. The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agroforest Syst 86, 159–174 (2012). https://doi.org/10.1007/s10457-012-9545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-012-9545-1

Keywords

Navigation