Skip to main content

Advertisement

Log in

Modelling and valuing the environmental impacts of arable, forestry and agroforestry systems: a case study

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The use of land for intensive arable production in Europe is associated with a range of externalities that typically impose costs on third parties. The introduction of trees in arable systems can potentially be used to reduce these costs. This paper assesses the profitability and environmental externalities of a silvoarable agroforestry system, and compares this with the profitability and environmental externalities from an arable system and a forestry system. A silvoarable experimental plot of poplar trees planted in 1992 in Bedfordshire, Eastern England, was used as a case study. The Yield-SAFE model was used to simulate the growth and yields of the silvoarable, arable, and forestry land uses along with the associated environmental externalities, including carbon sequestration, greenhouse gas emissions, nitrogen and phosphorus surplus, and soil erosion losses by water. The Farm-SAFE model was then used to quantify the monetary value of these effects. The study assesses both the financial profitability from a farmer perspective and the economic benefit from a societal perspective. The arable option was the most financially profitable system followed by the silvoarable system and forestry. However, when the environmental externalities were included, silvoarable agroforestry provided the greatest benefit. This suggests that the appropriate integration of trees in arable land can provide greater well-being benefits to society overall, than arable farming without trees, or forestry systems on their own.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agro Business Consultants (2015) The agricultural budgeting & costing book, 82nd edn. Agro Business Consultants, Melton Mowbray

    Google Scholar 

  • Anthony S, Duethman D, Gooday R, Harris D, Newell-Price P, Chadwick D, Misselbrook T (2009) Quantitative assessment of scenarios for managing trade-off between the economic performance of agriculture and the environment and between different environmental media. Final report, Defra project WQ0106 (module 6)

  • Burgess PJ, Morris J (2009) Agricultural technology and land use futures. Land Use Policy 26S:S222–S229

    Article  Google Scholar 

  • Burgess PJ, Incoll LD, Corry DT, Beaton A, Hart BJ (2005) Poplar (Populus spp.) growth and crop yields in a silvoarable experiment at three lowland sites in England. Agrofor Syst 63(2):157–169

    Article  Google Scholar 

  • Burgess PJ, Crous-Duran J, den Herder M, Dupraz C, Fagerholm N, Freese D, Garnett K, Graves AR, Hermansen JE, Liagre F, Mirck J, Moreno G, Mosquera-Losada MR, Palma JHN, Pantera A, Plieninger T, Upson M (2015) AGFORWARD project periodic report: January to December 2014. Cranfield University, Cranfield. AGFORWARD. https://www.agforward.eu/index.php/en/news-reader/id-27-february-2015.html

  • Camargo GGT, Ryan MR, Richard TL (2013) Energy use and greenhouse gas emissions from crop production using the farm energy analysis tool. Bioscience 63:263–273

    Article  Google Scholar 

  • DECC (2009) Carbon valuation in UK policy appraisal: a revised approach. DECC, London, pp 1–128

    Google Scholar 

  • DECC (2012) Updated short-term traded carbon values used for UK public policy appraisal. DECC, London, pp 1–8

    Google Scholar 

  • Dupraz C, Vincent G, Lecomte I, Bussière F, Sinoquet H (2004) Above-ground modules in Hi-SAFE (Tree phenology, tree C allocation, tree light interception, microclimate). Deliverable D.4.1 in Silvoarable Agroforestry For Europe (SAFE). European Research Contract QLK5-CT-2001-00560)

  • Dupraz C, Burgess P, Gavaland A, Graves A, Herzog F, Incoll LD, Jackson N, Keesman K, Lawson G, Lecomte I, Liagre F, Mantzanas K, Mayus M, Moreno G, Palma J, Papanastasis V, Paris P, Pilbeam DJ, Reisner Y, van Noordwijk M, Vincent G, van der Werf W (2005) SAFE final report-synthesis of the silvoarable agroforestry for Europe project. INRA-UMR system editions. European Union, Brussels

  • EMEP (2003) Cooperative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe. www.emep.int. Accessed Jan 2017

  • EU (2013) Regulation (EU) No 1306/2013 of the European Parliament and of the Council of 17 December 2013 on the financing, management and monitoring of the common agricultural policy and repealing Council Regulations (EEC) No 352/78, (EC) No 165/94, (EC) No 2799/98, (EC) No 814/2000, (EC) No 1290/2005 and (EC) No 485/2008 (OJ L 347 of 20.12.2013, p 1)

  • Farber SC, Costanza R, Wilson MA (2002) Economic and ecological concepts for valuing ecosystem services. Ecol Econ 41:375–392

    Article  Google Scholar 

  • Feldwisch N, Frede H, Hecker F (1998) Verfahren zum Abschätzen der Erosions und Auswaschungsgefahr. In: Frede H, Dabbert S (eds) Handbuch zum Gewässerschutz in der Landwirtschaft. Ecomed, Landsberg, pp 22–57

    Google Scholar 

  • García de Jalón S, Iglesias A, Cunningham R, Pérez Díaz JI (2014) Building resilience to water scarcity in Southern Spain: a case study of rice farming in Doñana protected wetlands. Reg Environ Change 14(3):1229–1242

    Article  Google Scholar 

  • Gifford R (2000a) Carbon content of woody roots: revised analysis and a comparison with woody shoot components. National Carbon Accounting System technical report no. 7 (revision 1). Australian Greenhouse Office, Canberra

    Google Scholar 

  • Gifford R (2000b) Carbon contents of above-ground tissues of forest and woodland trees. National Carbon Accounting System technical report no. 22. Australian Greenhouse Office, Canberra

    Google Scholar 

  • Graves AR, Burgess PJ, Palma JHN, Herzog F, Moreno G, Bertomeu M, Dupraz C, Liagre F, Keesman K, van der Werf W, Koeffeman de Nooy A, van den Briel JP (2007) Development and application of bio-economic modelling to compare silvoarable, arable and forestry systems in three European countries. Ecol Eng 29:434–449

    Article  Google Scholar 

  • Graves AR, Burgess PJ, Liagre F, Terreaux J-P, Borrel T, Dupraz C, Palma J, Herzog F (2011) Farm-SAFE: the process of developing a plot- and farmscale model of arable, forestry, and silvoarable economics. Agrofor Syst 81:93–108

    Article  Google Scholar 

  • Graves AR, Morris J, Deeks L, Rickson J, Kibblewhite M, Harris J, Fairwell T, Truckle I (2015) The cost of soil degradation in England and Wales. Ecol Econ 119:399–413

    Article  Google Scholar 

  • HM Treasury (2003) The Green Book: appraisal and evaluation in central government. TSO, London. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/220541/green_book_complete.pdf

  • Hoffman M, Johnson H (2003) Test of a modelling system for estimating nitrogen leaching—a pilot study in a small agricultural catchment. Environ Model Assess 8(1):15–23

    Article  Google Scholar 

  • IPCC (1996) Revised 1996 IPCC guidelines for national greenhouse gas inventories: reference manual. IPCC, Geneva

    Google Scholar 

  • JACOBS (2008) Environmental accounts for agriculture. Defra project SFS0601 final report. JACOBS UK Ltd, Manchester

    Google Scholar 

  • Johnston RJ, Rolfe J, Rosenberger RS, Brouwer R (2015) Introduction to benefit transfer methods. In: Johnston RJ, Rolfe J, Randall S, Rosenberger RS, Brouwer R (eds) Benefit transfer of environmental and resource values. A guide for researchers and practitioners. Springer, Dordrecht, pp 1–582

    Chapter  Google Scholar 

  • Liagre F (1997) ARBUSTRA Manuel de l’utilisateur. User manual for ARBUSTRA. Centre Régional de la Propriété Forestiere (CRPF) and l’Institut National de la recherché Agronomique (INRA), Montpellier, pp 1–71

    Google Scholar 

  • Nair PKR (2011) Methodological challenges in estimating carbon sequestration potential of agroforestry systems. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges. Springer, Heidelberg, pp 3–16

    Chapter  Google Scholar 

  • Nemeth T (1996) Nitrogen balances in long term field experiments. Fertil Res 43(1–3):13–19

    Article  Google Scholar 

  • Nix J (2014) John Nix farm management pocketbook, 44th edn. Agro Business Consultants, Melton Mowbray

    Google Scholar 

  • Noy-Meir I, Harpaz Y (1977) Agro-ecosystems in Israel. In: Harper J, Gruys P (eds) Agro-ecosystems, vol 4. Elsevier, Amsterdam, pp 143–167

    Google Scholar 

  • OFWAT (2005) Water framework directive—economic analysis of water industry costs. Final report. Water Services Regulation Authority, Oxford

    Google Scholar 

  • Ovington JD, Madgwick HAI (1958) The sodium, potassium and phosphorus contents of tree species grown in close stands. New Phytol. doi:10.1111/j.1469-8137.1958.tb05316.x

    Article  Google Scholar 

  • OXERA (2006) What is the cost of reducing ammonia, nitrates and BOD in sewage treatment works effluent? Ofwat, Oxford. http://www.ofwat.gov.uk/wp-content/uploads/2015/11/rpt_com_oxera080107.pdf

  • Palma JHN (2015) CliPick: project database of pan-European climate data for default model use. Milestone report 26 (6.1) for EU FP7 research project: AGFORWARD 613520. http://www.agforward.eu/index.php/en/clipick-project-database-of-pan-european-simulated-climate-data-for-default-model-use.html. Accessed 10 Oct 2015

  • Palma JHN, Graves AR, Burgess PJ, Keesman KJ, van Keulen H, Mayus M, Reisner Y, Herzog F (2007) Methodological approach for the assessment of environmental effects of agroforestry at the landscape scale. Ecol Eng 29(4):450–462

    Article  Google Scholar 

  • Panagos P, Meusburger K, Ballabio C, Borrelli P, Alewell C (2014) Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci Total Environ 479–480:189–200

    Article  PubMed  CAS  Google Scholar 

  • Panagos P, Ballabio C, Borrelli P, Meusburger K, Klik A, Rousseva S, Tadic MP, Michaelides S, Hrabalíková M, Olsen P, Aalto J, Lakatos M, Rymszewicz A, Dumitrescu A, Beguería S, Alewell C (2015a) Rainfall erosivity in Europe. Sci Total Environ 511:801–814

    Article  PubMed  CAS  Google Scholar 

  • Panagos P, Borrelli P, Meusburger K (2015b) A new European slope length and steepness factor (LS-factor) for modeling soil erosion by water. Geosciences 5:117–126

    Article  Google Scholar 

  • Panagos P, Borrelli P, Meusburger K, van der Zanden EH, Poesen J, Alewell C (2015c) Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European Scale. Environ Sci Policy 51:23–34

    Article  Google Scholar 

  • Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K, Montanarella L, Alewell C (2015d) The new assessment of soil loss by water erosion in Europe. Environ Sci Policy 54:438–447

    Article  Google Scholar 

  • Sandaña P, Pinochet D (2014) Grain yield and phosphorus use efficiency of wheat and pea in a high yielding environment. J Soil Sci Plant Nutr 14(4):973–986

    Google Scholar 

  • Sing L, Ray D, Watts K (2015) Ecosystem services and forest management. Research note. UK Forestry Commission. http://www.forestry.gov.uk/pdf/FCRN020.pdf/$FILE/FCRN020.pdf

  • Thomas TH (1991) A spreadsheet approach to the economic modelling of agroforestry systems. For Ecol Manag 45:207–235

    Article  Google Scholar 

  • Tipping E, Benham S, Boyle JF, Crow P, Davies J, Fischer U, Guyatt H, Helliwell R, Jackson-Blake L, Lawlor AJ, Monteith DT, Roweg EC, Toberman H (2014) Atmospheric deposition of phosphorus to land and freshwater. Environ Sci Process Impacts 16:1608–1617

    Article  PubMed  CAS  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8(8):857–874

    Article  Google Scholar 

  • Udawatta RP, Krstansky JJ, Henderson GS, Harold E (2002) Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison. J Environ Qual 31(4):1214–1225

    Article  PubMed  CAS  Google Scholar 

  • UK Forestry Commission (2015) UK Woodland Carbon Code. www.forestry.gov.uk/carboncode

  • Upson M, Burgess PJ (2013) Soil organic carbon and root distribution in a temperate arable agroforestry system. Plant Soil 373:43–58

    Article  CAS  Google Scholar 

  • Van der Werf W, Keesman K, Burgess P, Graves A, Pilbeam D, Incoll LD, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma J, Dupraz C (2007) Yield-SAFE: a parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol Eng 29(4):419–433

    Article  Google Scholar 

  • van Keulen H, Wilf J (1986) Crop production as determined by nutrient availability. Modelling of agricultural production: weather, soils and crops. simulation monographs. Pudoc, Wageningen, pp 153–181

    Google Scholar 

  • van Keulen H, Aarts H, Habekotte B, van der Meer H, Spiertz J (2000) Soil–plant–animal relations in nutrient cycling: the case of dairy farming system ‘De Marke’. Eur J Agron 13(2/3):245–261

    Article  Google Scholar 

  • van Noordwijk M, Lusiana B (1999) WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. Agrofor Syst 43(1–3):217–242

    Google Scholar 

  • Vlek P, Fillery I, Burford J (1981) Accession, transformation, and loss of nitrogen in soils of the arid region. Plant Soil 58:133–175

    Article  CAS  Google Scholar 

  • Wild A (1993) Soils and the environment: an introduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Williams AG, Audsley E, Sandars DL (2010) Environmental burdens of producing bread wheat, oilseed rape and potatoes in England and Wales using simulation and system modelling. Int J Life Cycle Assess 15(8):855–868

    Article  CAS  Google Scholar 

  • Young A, Menz K, Muraya P, Smith C (1998) SCUAF version 4: a model to estimate soil changes under agriculture, agroforestry and forestry. ACIAR technical report series no 41. ACIAR, Canberra, pp 1–49

    Google Scholar 

Download references

Acknowledgements

We acknowledge support of the European Commission through the AGFORWARD FP7 research project (Contract No. 613520). The silvoarable experiment received funding from the UK Ministry of Agriculture, Fisheries and Food (1992–1997) and the UK Department of Environment, Food and Rural Affairs (1999–2003). The analysis of tree measurements in 2011 were made with the support of the Forestry Commission and the Scottish Forestry Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvestre García de Jalón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García de Jalón, S., Graves, A., Palma, J.H.N. et al. Modelling and valuing the environmental impacts of arable, forestry and agroforestry systems: a case study. Agroforest Syst 92, 1059–1073 (2018). https://doi.org/10.1007/s10457-017-0128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-017-0128-z

Keywords

Navigation