Skip to main content
Log in

Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Analysis of skin lesion images via visual inspection and manual examination to diagnose skin cancer has always been cumbersome. This manual examination of skin lesions in order to detect melanoma can be time-consuming and tedious. With the advancement in technology and rapid increase in computational resources, various machine learning techniques and deep learning models have emerged for the analysis of medical images most especially the skin lesion images. The results of these models have been impressive, however analysis of skin lesion images with these techniques still experiences some challenges due to the unique and complex features of the skin lesion images. This work presents a comprehensive survey of techniques that have been used for detecting skin cancer from skin lesion images. The paper is aimed to provide an up-to-date survey that will assist investigators in developing efficient models that automatically and accurately detects melanoma from skin lesion images. The paper is presented in five folds: First, we identify the challenges in detecting melanoma from skin lesions. Second, we discuss the pre-processing and segmentation techniques of skin lesion images. Third, we make comparative analysis of the state-of-the-arts. Fourth we discuss classification techniques for classifying skin lesions into different classes of skin cancer. We finally explore and analyse the performance of the state-of-the-arts methods employed in popular skin lesion image analysis competitions and challenges of ISIC 2018 and 2019. Application of ensemble deep learning models on well pre-processed and segmented images results in better classification performance of the skin lesion images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas Q, Emre Celebi M, García IF, Rashid M (2011) Lesion border detection in dermoscopy images using dynamic programming. Skin Res Technol 17(1):91–100

    Article  Google Scholar 

  • Abbas Q, Emre Celebi M, García IF, Rashid M (2011) Lesion border detection in dermoscopy images using dynamic programming. Skin Res Technol 17(1):91–100

    Article  Google Scholar 

  • Adegun AA, Akande NO, Ogundokun RO, Asani EO (2018) Image segmentation and classification of large scale satellite imagery for land use: a review of the state of the arts. International J Civ Eng Technol 9(11)

  • Adegun AA, Viriri S (2019) “Deep learning-based system for automatic melanoma detection.” IEEE Access

  • Adegun A, Viriri S (2019) “An enhanced deep learning framework for skin lesions segmentation.” In: International conference on computational collective intelligence, pp 414-425. Springer, Cham

  • Adeyinka AA, Viriri S (2018) “Skin lesion images segmentation: a survey of the state-of-the-art.” In: International conference on mining intelligence and knowledge exploration, pp 321-330. Springer, Cham

  • Akram T, Junaid Lodhi HM, Naqvi SR, Naeem S, Alhaisoni M, Ali M, Haider SA, Qadri NN (2020) A multilevel features selection framework for skin lesion classification. Human-centric Comput Inf Scinces 10:1–26

    Article  Google Scholar 

  • Aljanabi M, Özok YE, Rahebi J, Abdullah AS (2018) Skin lesion segmentation method for dermoscopy images using artificial bee colony algorithm. Symmetry 10(8):347

    Article  Google Scholar 

  • Almaraz-Damian J-A, Ponomaryov V, Sadovnychiy S, Castillejos-Fernandez H (2020) Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures. Entropy 22(4):484

    Article  Google Scholar 

  • Al-masni MA, Al-antari MA, Park JM, Gi G, Kim T-Y, Rivera P, Valarezo E, Han S-M, Kim T-S (2017) “Detection and classification of the breast abnormalities in digital mammograms via regional convolutional neural network.” In: 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). pp 1230–1233, IEEE

  • Al-Masni MA, Al-antari MA, Choi M-T, Han S-M, Kim T-S (2018) Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput Methods Programs Biomed 162:221–231

    Article  Google Scholar 

  • Alqudah AM, Alquraan H, Qasmieh IA (2019) “Segmented and non-segmented skin lesions classification using transfer learning and adaptive moment learning rate technique using pretrained convolutional neural network.” In: Journal of Biomimetics, Biomaterials and Biomedical Engineering, (Vol 42, pp 67-78) Trans Tech Publications Ltd

  • Amelio A, Pizzuti C (2013) “Skin lesion image segmentation using a color genetic algorithm.” In: Proceedings of the 15th annual conference companion on Genetic and evolutionary computation, pp 1471-1478

  • Amro MK, Singh B, Rizvi A (2018) “Skin lesion classification and segmentation for imbalanced classes using deep learning ”

  • Aszemi NM, Dominic PDD (2019) Hyperparameter optimization in convolutional neural network using genetic algorithms. Int J Adv Comput Sci Appl. https://doi.org/10.14569/IJACSA.2019.0100638

    Article  Google Scholar 

  • Bagchi S, Banerjee A, Bathula DR (2019) Skin lesion classification using ensemble of stacks and confidence estimations of long tail distributions. ISIC

  • Balch CM, Gershenwald JE, Soong S, Thompson JF, Atkins MB, Byrd DR, Buzaid AC et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27(36):6199

    Article  Google Scholar 

  • Barata C, Emre Celebi M, Marques JS (2018) A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J Biomed Health Inf 23(3):1096–1109

    Article  Google Scholar 

  • Berseth M (2017) “ISIC 2017-skin lesion analysis towards melanoma detection.” arXiv preprint arXiv:1703.00523

  • Beuren AT, Janasieivicz R, Pinheiro G, Grando N, Facon J (2012) “Skin melanoma segmentation by morphological approach.” In: Proceedings of the international conference on advances in computing, communications and informatics, pp 972-978

  • Bi L, Kim J, Ahn E, Kumar A, Fulham M, Feng D (2017) Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans Biomed Eng 64(9):2065–2074

    Article  Google Scholar 

  • Bi L, Feng D, Kim J (2018) Dual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentation. The Visual Computer 34(6–8):1043–1052

    Article  Google Scholar 

  • Bissoto A, Perez F, Ribeiro V, Fornaciali M, Avila S, Valle E (2018) “Deep-learning ensembles for skin-lesion segmentation, analysis, classification: RECOD titans at ISIC challenge 2018.” arXiv preprint arXiv:1808.08480

  • Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, Schilling B et al (2019) Deep learning outperformed 136–157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer 113:47–54

    Article  Google Scholar 

  • Cheng E-J, Chou K-P, Rajora S, Bo-Hao Jin M, Tanveer C-TL, Young K-Y, Lin W-C, Prasad M (2019) Deep sparse representation classifier for facial recognition and detection system. Pattern Recogn Lett 125:71–77

    Article  Google Scholar 

  • Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258

  • Chouhan V (2019) Skin lesion analysis towards melanoma detection with deep convolutional neural network. ISIC

  • Codella NCF, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A et al. (2018) “Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic).” In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp 168-172. IEEE

  • Cohen S, Shimoni N (2019) TTA meta learning for anomaly detection on skin lesion. ISIC

  • Dandi CX, Che MC, Jingyuan C, Zhuoran X, Fei W (2018) U-Net ensemble for skin lesion analysis towards melanoma detection. ISIC

  • Dar AS, Padha D (2019) “Medical image segmentation: a review of recent techniques, advancements and a comprehensive comparison”

  • Dat T, Lan DT, Nguyen TTH, Nguyen TTN, Nguyen H-P, Phuong L, Nguyen TZ (2019) “Ensembled skin cancer classification (ISIC 2019 challenge submission)”

  • Deepika K, Bhisham S (2019) Advanced neutrosophic set-based ultrasound image analysis. Neutrosophic set in medical image analysis. Academic Press, Cambridge, pp 51–73

    Google Scholar 

  • Dermofit image library, https://licensing.eri.ed.ac.ukli/software/dermofit-image-library.html

  • Dobrenkii A, Georgievskaya A, Kiselev K (2018) “ISIC 2018 journey, skin lesion analysis”

  • El-Khatib H, Popescu D, Ichim L (2020) Deep learning-based methods for automatic diagnosis of skin lesions. Sensors 20(6):1753

    Article  Google Scholar 

  • Emre Celebi M, Kingravi HA, Hitoshi Iyatomi Y, Aslandogan A, Stoecker WV, Moss RH, Malters JM et al (2008) Border detection in dermoscopy images using statistical region merging. Skin Res Technol 14(3):347–353

    Article  Google Scholar 

  • Emre Celebi M, Wen Q, Hwang S, Iyatomi H, Schaefer G (2013) Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res Technol 19(1):e252–e258

    Article  Google Scholar 

  • Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118

    Article  Google Scholar 

  • Francois-Lavet V, Henderson P, Islam R, Bellemare MG, Pineau J (2018) “An introduction to deep reinforcement learning.” arXiv preprint arXiv:1811.12560

  • Ganster H, Pinz P, Rohrer R, Wildling E, Binder M, Kittler H (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20(3):233–239

    Article  Google Scholar 

  • Gessert N, Nielsen M, Shaikh M, Werner R, Schlaefer A (2019) Skin lesion classification using loss balancing and ensembles of multi-resolution EfficientNets. ISIC

  • Gessert N, Nielsen M, Shaikh M, Werner R, Schlaefer A (2020) “Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data.” MethodsX, p 100864

  • Gessert N, Sentker T, Madesta F, Schmitz R, Kniep H, Baltruschat I, Werner R, Schlaefer A (2018) “Skin lesion diagnosis using ensembles, unscaled multi-crop evaluation and loss weighting.” arXiv preprint arXiv:1808.01694

  • Goceri E (2019) “Analysis of deep networks with residual blocks and different activation functions: classification of skin diseases.” In: 2019 Ninth international conference on image processing theory, tools and applications (IPTA), pp 1-6. IEEE

  • Goceri E (2019) “Challenges and recent solutions for image segmentation in the era of deep learning.” In: 2019 Ninth international conference on image processing theory, tools and applications (IPTA), IEEE, pp 1–6

  • Goceri E (2019) “Skin disease diagnosis from photographs using Deep learning.” In: ECCOMAS thematic conference on computational vision and medical image processing, pp 239-246. Springer, Cham

  • Goceri Evgin (2018) Formulas behind deep learning success. In: International conference on applied analysis and mathematical modelling

  • Goceri E (2019) Diagnosis of Alzheimer’s disease with Sobolev gradient-based optimization and 3D convolutional neural network. Int J Numer Methods Biomed Eng 35(7):e3225

    Article  MathSciNet  Google Scholar 

  • Gómez DD, Butakoff C, Ersboll BK, Stoecker W (2007) Independent histogram pursuit for segmentation of skin lesions. IEEE Trans Biomed Eng 55(1):157–161

    Article  Google Scholar 

  • Guha SR, Haque SMR (2020) “Performance comparison of machine learning-based classification of skin diseases from skin lesion images.” In: International conference on communication, computing and electronics systems, pp 15–25, Springer, Singapore

  • Hao D, Seok JY, Ng D, Yuan NK, Feng M (2018) ISIC Challenge 2018. ISIC

  • He K, Zhang X, Ren S, Sun J (2015a) Deep residual learning for image recognition. Multimed Tools Appl 77:10437–10453. https://doi.org/10.1007/s11042-017-4440-4

    Article  Google Scholar 

  • Horning N (2013) Introduction to decision trees and random forests. Am Mus Nat Hist 2:1–27

    Google Scholar 

  • Huang G, Liu Z, Van Der ML, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  • Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141

  • Iqbal MS, El-Ashram S, Hussain S, Khan T, Huang S, Mehmood R, Luo B (2019) Efficient cell classification of mitochondrial images by using deep learning. J Opt 48(1):113–122

    Article  Google Scholar 

  • Iqbal MS, Luo B, Mehmood R, Alrige MA, Alharbey R (2019) Mitochondrial organelle movement classification (fission and fusion) via convolutional neural network approach. IEEE Access 7:86570–86577

    Article  Google Scholar 

  • ISIC (2018) Leaderboards, https://challenge2018.isic-archive.com/leaderboards/

  • ISIC (2019) Leaderboards, https://challenge2019.isic-archive.com/leaderboard.html

  • Jamil U, Khalid S (2014) “Comparative study of classification techniques used in skin lesion detection systems.” In: 17th IEEE international multi topic conference 2014, pp 266-271. IEEE

  • Ji Y, Li X, Zhang G, Lin D, Chen H (2018) Automatic skin lesion segmentation by feature aggregation convolutional neural network. ISIC

  • Karlik B, Vehbi Olgac A (2011) Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int J Artif Intell Expert Syst 1(4):111–122

    Google Scholar 

  • Khan MQ, Hussain A, Rehman SU, Khan U, Maqsood M, Mehmood K, Khan MA (2019) Classification of melanoma and nevus in digital images for diagnosis of skin cancer. IEEE Access 7:90132–90144

    Article  Google Scholar 

  • Khan A, Sohail A, Zahoora U, Qureshi AS (2019) “A survey of the recent architectures of deep convolutional neural networks.” arXiv preprint arXiv:1901.06032

  • Koohbanani NA, Jahanifar M, Tajeddin NZ, Gooya A(2018) “Leveraging transfer learning for segmenting lesions and their attributes in dermoscopoy images”, ISIC

  • Krizhevsky A, SI, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst, pp 1097–1105

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  • Lee YC, Jung S-H, Won H-H (2018) “WonDerM: skin lesion classification with fine-tuned neural networks.” arXiv preprint arXiv:1808.03426

  • Li Katherine M, Li Evelyn C (2018) “Skin lesion analysis towards melanoma detection via end-to-end deep learning of convolutional neural networks.” arXiv preprint arXiv:1807.08332

  • Li Y, Shen L (2018) Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2):556

    Article  Google Scholar 

  • Masood A, Al-Jumaily AA(2013) “Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms.” Int J Biomed Imaging 2013

  • Mathew Sh, Sathyakala D (2015) “Segmentation of skin lesions and classification by neural network.” Int J Adv Res Electron Commun Eng (IJARECE) Vol 4

  • Mobiny A, Singh A, Van Nguyen H (2019) Risk-aware machine learning classifier for skin lesion diagnosis. J Clin Med 8(8):1241

    Article  Google Scholar 

  • Mohamed AAI, Ali MM, Nusrat K, Rahebi J, Sayiner A, Kandemirli F (2017) Melanoma skin cancer segmentation with image region growing based on fuzzy clustering mean. Int J Eng Innov Res 6(2):91–95

    Google Scholar 

  • Mohan VC, Dharan SA (2019) “A review on skin lesion classification techniques.” Int J Eng Res Technol (IJERT). 8(01)

  • Molina-Moreno M, González-Díaz I, Díaz-de-María F (2018) An elliptical shape-regularized convolutional neural network for skin lesion segmentation. ISIC

  • Møllersen K, Kirchesch HM, Schopf TG, Godtliebsen F (2010) Unsupervised segmentation for digital dermoscopic images. Skin Res Technol 16(4):401–407

    Article  Google Scholar 

  • Moore GE (1965) “Cramming more components onto integrated circuits.” pp 114-117

  • Naji S, Jalab HA, Kareem SA (2019) A survey on skin detection in colored images. Artif Intell Rev 52(2):1041–1087

    Article  Google Scholar 

  • Nasir M, Khan MA, Sharif M, Lali IU, Saba T, Iqbal T (2018) An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc Res Tech 18(6):528–543

    Article  Google Scholar 

  • Nozdryn-Plotnicki A, Yap J, Yolland W (2018) “Ensembling convolutional neural networks for skin cancer classification”

  • Nwankpa C, Ijomah W, Gachagan A, Marshall S (2018) “Activation functions: comparison of trends in practice and research for deep learning.” arXiv preprint arXiv:1811.03378

  • Okuboyejo D, Olugbara OO, Odunaike S (2014) Unsupervised restoration of hair-occluded lesion in dermoscopic images. MIUA, pp 91–96

  • Oliveira RB, Filho EM, Ma Z, Papa JP, Pereira AS, Tavares JMRS (2016) Computational methods for the image segmentation of pigmented skin lesions: a review. Comput Methods Programs Biomed 131:127–141

    Article  Google Scholar 

  • Olugbara OO, Taiwo TB, Heukelman D (2018) Segmentation of melanoma skin lesion using perceptual color difference saliency with morphological analysis. Mathematical Problems in Engineering 2018

  • O’Shea K, Nash R (2015) “An introduction to convolutional neural networks.” arXiv preprint arXiv:1511.08458

  • Pachecoa AGC, Alib A-R, Trappenber T (2019) “Skin cancer detection based on deep learning andentropy to detect outlier samples”, ISIC

  • Pan Y, Xia Y (2018) “Residual network based aggregation model for skin lesion classification.” arXiv preprint arXiv:1807.09150

  • Pennisi A, Bloisi DD, Nardi D, Giampetruzzi AR, Mondino C, Facchiano A (2016) Skin lesion image segmentation using Delaunay triangulation for melanoma detection. Comput Med Imaging Graph 52:89–103

    Article  Google Scholar 

  • Peruch F, Bogo F, Bonazza M, Cappelleri V-M, Peserico E (2013) Simpler, faster, more accurate melanocytic lesion segmentation through meds. IEEE Trans Biomed Eng 61(2):557–565

    Article  Google Scholar 

  • PH2 database,https://www.fc.up.pt/addi/ph2database.html

  • Pollastri F, Bolelli F, Paredes R, Grana C (2019) Augmenting data with GANs to segment melanoma skin lesions. Multimedia Tools and Applications, pp 1–18

  • Pollastri F, Maronas J, Parreno M, Bolelli F, Paredes R, Grana C, Albiol A (2019) “ISIC Challenge 2019”

  • Premaladha J, Ravichandran KS (2016) Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J Med Syst 40(4):96

    Article  Google Scholar 

  • Qian C, Jiang H, Liu T (2018)“Skin lesion analysis” ISIC

  • Rajora S, Vishwakarma DK, Singh K, Prasad M (2018) “CSgI: a deep learning based approach for Marijuana leaves strain classification.” In: 2018 IEEE 9th annual information technology, electronics and mobile communication conference (IEMCON), pp 209-214. IEEE

  • Ramachandram D, DeVries T (2017) “LesionSeg: semantic segmentation of skin lesions using deep convolutional neural network.” arXiv preprint arXiv:1703.03372

  • Ratul AR, Hamed MM, Lee W-S, Parimbelli E (2019) “Skin lesions classification using deep learning based on dilated convolution.” bioRxiv, 860700

  • Sakib S, Ahmed N, Kabir AJ, Ahmed H (2019) “An overview of convolutional neural network: its architecture and applications”

  • Schaefer G, Bartosz Krawczyk M, Celebi E, Iyatomi H (2014) An ensemble classification approach for melanoma diagnosis. Memet Comput 6(4):233–240

    Article  Google Scholar 

  • Shen D, Guorong W, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

    Article  Google Scholar 

  • Simonyan K, Zisserman A (2014) “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:1409.1556

  • Sorokin A (2018) Lesion analysis and diagnosis with mask-RCNN. ISIC

  • Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) “Inception-v4, inception-resnet and the impact of residual connections on learning.” In: Thirty-first AAAI conference on artificial intelligence

  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) “Going deeper with convolutions.” In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  • Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

  • Tschandl P, Rosendahl C, Kittler H (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5:180161

    Article  Google Scholar 

  • Ünver HM, Ayan E (2019) Skin lesion segmentation in dermoscopic images with combination of YOLO and grabcut algorithm. Diagnostics 9(3):72

    Article  Google Scholar 

  • Vesal S, Ravikumar N, Maier A (2018) “Skinnet: a deep learning framework for skin lesion segmentation.” In: 2018 IEEE nuclear science symposium and medical imaging conference proceedings (NSS/MIC). IEEE, pp 1–3

  • Vestergaard ME, Macaskill PHPM, Holt PE, Menzies SW (2008) Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br J Dermatol 159(3):669–676

    Google Scholar 

  • Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) “Residual attention network for image classification.” In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164

  • Woo S, Park J, Lee J-Y, Kweon IS(2018) “Cbam: convolutional block attention module.” In: Proceedings of the European conference on computer vision (ECCV), pp 3–19

  • Wu S, Zhong S, Liu Y (2018) Deep residual learning for image steganalysis. Multimed Tools Appl 77(9):10437–10453

    Article  Google Scholar 

  • Xie F, Bovik AC (2013) Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recogn 46(3):1012–1019

    Article  Google Scholar 

  • Xie S, Girshick R, Dollár P, Tu Z, He K (2017) “Aggregated residual transformations for deep neural networks.” In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1492-1500

  • Xing J, Zeng C, Yangwen H, Tao W, Mao Y, Wang S, Zheng Y, Wang R (2019) Open-set recognition of dermoscopic images with ensemble of deep convolutional networks. ISIC

  • Xinzi H, Zhen Y, Wang T, Lei B, Shi Y (2018) Dense deconvolution net: multi path fusion and dense deconvolution for high resolution skin lesion segmentation. Technol Health Care 26(S1):307–316

    Google Scholar 

  • Xue Y, Gong L, Peng W, Huang X, Zheng Y (2018) Automatic skin lesion analysis with deep networks. ISIC

  • Xue Y, Gong L, Peng W, Huang X, Zheng Y (2018) Automatic skin lesion analysis with deep networks. ISIC

  • Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imaging 9(4):611–629

    Article  Google Scholar 

  • Yang J, Chen W (2018) Skin lesion analysis using deep neural networks. ISIC

  • Yanikoglu B, Aptoula E, Goksu O, Sara Atito Ahmed (2019) Skin lesion classification with deep learning ensembles in ISIC 2019. ISIC

  • Yousef ZM, Motahari H (2019) “Skin lesion analysis towards melanoma detection using softmax ensemble model and sigmoid ensemble model”

  • Yu L, Chen H, Dou Q, Qin J, Heng P-A (2016) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36(4):994–1004

    Article  Google Scholar 

  • Yuan Y, Lo Y-C (2017) Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks. IEEE J Biomed Health Inf 23(2):519–526

    Article  Google Scholar 

  • Yuan Q, Tavildar S (2018) An open solution to ISIC 2018 classification and segmentation challenges. ISIC

  • Yüksel ME, Borlu M (2009) Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans Fuzzy Syst 17(4):976–982

    Article  Google Scholar 

  • Zaqout I (2019) Diagnosis of skin lesions based on dermoscopic images using image processing techniques. In: Pattern recognition-selected methods and applications, IntechOpen

  • Zhang P (2019) MelaNet: a deep dense attention network for melanoma detection in dermoscopy images. ISIC

  • Zhang G, Shen X, Chen S, Liang L, Luo Y, Jie Y, Jianwei L (2019) DSM: a deep supervised multi-scale network learning for skin cancer segmentation. IEEE Access 7:140936–140945

    Article  Google Scholar 

  • Zhou H, Gerald S, Abdul HS, Celebi ME (2009) Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE J Sel Top Signal Process 3(1):26–34

    Article  Google Scholar 

  • Zhou H, Schaefer G, Celebi ME, Lin F, Liu T (2011) Gradient vector flow with mean shift for skin lesion segmentation. Comput Med Imaging Graph 35(2):121–127

    Article  Google Scholar 

  • Zhou H, Schaefer G, Sadka A, Celebi ME (2008) “Anisotropic mean shift based fuzzy c-means segmentation of skin lesions.” In: Proceedings of the 5th international conference on Soft computing as transdisciplinary science and technology, pp 438-443

  • Zhou S, Zhuang Y, Meng R (2019) Multi-category skin lesion diagnosis using dermoscopy images and deep CNN ensembles. ISIC

  • Zhuangy J, Liy W, Manivannanz S, Wangy R, Zhang J, Liuy J, Pany J, Jiangy G, Yiny Z(2018) “Skin lesion analysis towards melanoma detection using deep neural network ensemble”

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serestina Viriri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adegun, A., Viriri, S. Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art. Artif Intell Rev 54, 811–841 (2021). https://doi.org/10.1007/s10462-020-09865-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-020-09865-y

Keywords

Navigation