Skip to main content
Log in

Ultrasound tissue classification: a review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Ultrasound imaging is the most widespread medical imaging modality for creating images of the human body in clinical practice. Tissue classification in ultrasound has been established as one of the most active research areas, driven by many important clinical applications. In this paper, we present a survey on ultrasound tissue classification, focusing on recent advances in this area. We start with a brief review on the main clinical applications. We then introduce the traditional approaches, where the existing research on feature extraction and classifier design are reviewed. As deep learning approaches becoming popular for medical image analysis, the recent deep learning methods for tissue classification are also introduced. We briefly discuss the FDA-cleared techniques being used clinically. We conclude with the discussion on the challenges and research focus in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboofazeli M,Abolmaesumi P,Fichtinger G,Mousavi P (2009) Tissue characterization using multiscale products of wavelet transform of ultrasound radio frequency echoes. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBS), pp 479–482

  • Acharya UR, Faust O, Sree SV, Molinari F, Suri JS (2012) Thyroscreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Program Biomed 107(2):233–41

    Google Scholar 

  • Acharya UR, Sree SV, Ribeiro R, Krishnamurthi G, Marinho RT, Sanches J, Suri JS (2012) Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm. Med Phys 39(7):4255–64

    Google Scholar 

  • Acharya UR, Swapna G, Vinitha Sree S, Molinari F, Gupta S, Bardales RH, Witkowska A, Suri JS (2014) A review on ultrasound-based thyroid cancer tissue characterization and automated classification. Technol Cancer Res Treat 13(4):289–301

    Google Scholar 

  • Acharya UR, Oliver F, Filippo M, Vinitha SS, Sameer PJ, Vidya S (2015) Ultrasound-based tissue characterization and classification of fatty liver disease: a screening and diagnostic paradigm. Knowl-Based Syst 75:66–77

    Google Scholar 

  • Allwein EL, Schapire RE, Singer Y (2000) Reducing multiclass to binary: a unifying approach for margin classifiers. J Mach Learn Res 1:113–141

    MathSciNet  MATH  Google Scholar 

  • Andreassen BS, Veronesi F, Gerard O, Solberg AHS, Samset E (2019) Mitral annulus segmentation using deep learning in 3d transesophageal echocardiography. IEEE J Biomed Health Inf

  • Azizi S, Bayat S, Yan P, Tahmasebi A, Nir G, Kwak JT, Sheng X, Wilson S, Iczkowski KA, Scott Lucia M, Goldenberg L, Salcudean SE, Pinto PA, Wood B, Abolmaesumi P, Mousavi P (2017) Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations. Int J Comput Assist Radiol Surg 12(8):1293–1305

    Google Scholar 

  • Azizi S, Bayat S, Yan P, Tahmasebi A, Kwak J. T, Xu S,  Turkbey B, Choyke P, Pinto P, Wood B,  MousaviP, Abolmaesumi P (2018) Deep recurrent neural networks for prostate cancer detection: analysis of temporal enhanced ultrasound. IEEE Trans Med Imaging 1

  • Azizi S, Imani F, Zhuang B, Tahmasebi A, Kwak JT, Xu S, Uniyal N, Turkbey B, Choyke P, Pinto P, et al (2015) Ultrasound-based detection of prostate cancer using automatic feature selection with deep belief networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 70–77

  • Azzopardi C, Camilleri K, Hicks YA (2020) Bimodal automated carotid ultrasound segmentation using geometrically constrained deep neural networks. IEEE J Biomed Health Inf

  • Baka N, Leenstra S, van Walsum T (2017) Ultrasound aided vertebral level localization for lumbar surgery. IEEE Trans Med Imaging 36(10):2138–2147

    Google Scholar 

  • Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Google Scholar 

  • Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Google Scholar 

  • Bengio Y, Yao L, Alain G, Vincent P (2013) Generalized denoising auto-encoders as generative models. In: Advances in Neural information processing systems, pp 899–907

  • Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, öhm-Vélez Marcela B, Pisano ED, Jong RA, Evans W, Morton MJ, et al (2008) Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 299(18):2151–2163

    Google Scholar 

  • Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S et al (2007) Mammographic density and the risk and detection of breast cancer. New Engl J Med 356(3):227–236

    Google Scholar 

  • Braeckman J, Autier P, Garbar C, Marichal MP, Soviany C, Nir R, Nir D, Michielsen D, Bleiberg H, Egevad L, Emberton M (2008) Computer-aided ultrasonography (histoscanning): a novel technology for locating and characterizing prostate cancer. BJU Int 101(3):293–298

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    MATH  Google Scholar 

  • Brock M, Eggert T, Palisaar RJ, Roghmann F, Braun K, Loppenberg B, Sommerer F, Noldus J, von Bodman C (2013) Multiparametric ultrasound of the prostate: adding contrast enhanced ultrasound to real-time elastography to detect histopathologically confirmed cancer. J Urol 189(1):93–8

    Google Scholar 

  • Caballero KL, Barajas J, Pujol O, Rodriguez O, Radeva P (2007) Using reconstructed ivus images for coronary plaque classification. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBS), pp 2167–2170

  • Caballero KL, Barajas J, Pujol O, Salvatella N, Radeva P (2006) In-vivo ivus tissue classification: a comparison between rf signal analysis and reconstructed images. In: Progress in pattern recognition, image analysis and applications, 11th Iberoamerican Congress in pattern recognition (CIARP), pp 137–146

  • Chen SJ, Yu SN, Tzeng JE, Chen YT, Chang KY, Cheng KS, Hsiao FT, Wei CK (2009) Characterization of the major histopathological components of thyroid nodules using sonographic textural features for clinical diagnosis and management. Ultrasound Med Biol 35(2):201–8

    Google Scholar 

  • Chen H, Ni D, Qin J, Li S, Yang X, Wang T, Heng PA (2015) Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed health Inf 19(5):1627–1636

    Google Scholar 

  • Chen FK, de Castro Abreu AL, Palmer SL (2016) Utility of ultrasound in the diagnosis, treatment, and follow-up of prostate cancer: State of the art. J Nucl Med 57

  • Chen H, Wu L, Dou Q, Qin J, Li S, Cheng JZ, Ni D, Heng PA (2017) Ultrasound standard plane detection using a composite neural network framework. IEEE Trans Cybern 47(6):1576–1586

    Google Scholar 

  • Chen H, Dou Q, Ni D, Cheng J-Z, Qin J, Li S, Heng P-A (2015) Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. medical image computing and computer-assisted intervention - MICCAI 2015. Lecture Notes in Computer Science. Springer, Cham, pp 507–514

  • Cheng PM, Malhi HS (2017) Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images. J Digit Imaging 30(2):234–243

    Google Scholar 

  • Cheng HD, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognit 43(1):299–317

    MATH  Google Scholar 

  • Chi J, Walia E, Babyn P, Wang J, Groot G, Eramian M (2017) Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. J Digit Imaging 30(4):477

    Google Scholar 

  • Chiang T, Huang Y, Chen R, Huang C, Chang R (2019) Tumor detection in automated breast ultrasound using 3-d cnn and prioritized candidate aggregation. IEEE Trans Med Imaging 38(1):240–249

    Google Scholar 

  • Ciompi F (2012) Multiclass learning for vessel characterization in intravascular ultrasound. PhD thesis, Universitat de Barcelona, Computer Vision Center

  • Ciompi F, Pujol O, Gatta C, Rodriguez-Leor O, Mauri-Ferré J, Radeva P (2010) Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization. Int J Cardiovasc Imaging 26(7):763–779

    Google Scholar 

  • Ciompi F, Pujol O, Rodriguez-Ll, Gatta C, Vida A, Radeva P (2009) Enhancing in-vitro ivus data for tissue characterization. In: 4th Iberian Conference on pattern recognition and image analysis, pp 241–248

  • Correas J-M, Tissier A-M, Khairoune A, Khoury G, Eiss D, Helenon O (2013) Ultrasound elastography of the prostate: State of the art. Diagnostic Int Imaging 94(5):551–560

    Google Scholar 

  • Daoud MI, Mousavi P, Imani F, Rohling R, Abolmaesumi P (2011) Computer-aided tissue characterization using ultrasound-induced thermal effects: analytical formulation and in-vitro animal study. In: Proceedings of SPIE 7968, Medical Imaging

  • Daoud MI, Mousavi P, Imani F, Rohling R, Abolmaesumi P (2013) Tissue classification using ultrasound-induced variations in acoustic backscattering features. IEEE Trans Biomed Eng 60(2):310–320

    Google Scholar 

  • Daugman JG (1988) Complete discrete 2d gabor transform by neural networks for image analysis and compression. IEEE Trans Acoustics Speech Signal Process 36(7):1169–1179

    MATH  Google Scholar 

  • Destrempes F, Cloutier G (2010) A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope. Ultrasound Med Biol 36(7):1037–1051

    Google Scholar 

  • Ding J, Cheng H, Ning C, Huang J, Zhang Y (2011) Quantitative measurement for thyroid cancer characterization based on elastography. J Ultrasound Med 30(9):1259–66

    Google Scholar 

  • Ding J, Cheng HD, Huang J, Liu J, Zhang Y (2012) Breast ultrasound image classification based on multiple-instance learning. J Digit Imaging 25(5):620–627

    Google Scholar 

  • Drukker K, Sennett CA, Giger ML (2014) Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts. Med Phys 41(1)

  • Duric N, Littrup PK CM (2018) Breast ultrasound tomography. Breast Imaging

  • Ehsan K, Mohsen S, Hamid B, Salamati M, Tan T (2017) Mass segmentation in automated 3-d breast ultrasound using adaptive region growing and supervised edge-based deformable model. IEEE Trans Med Imaging 37(4):918–928

    Google Scholar 

  • Escalera S, Pujol O, Mauri J, Radeva P (2009) Intravascular ultrasound tissue characterization with sub-class error-correcting output codes. Signal Process Syst 55(1–3):35–47

    Google Scholar 

  • Feleppa EJ, Rondeau MJ, Lee P, Porter CR (2009) Prostate-cancer imaging using machine-learning classifiers: potential value for guiding biopsies, targeting therapy, and monitoring treatment. In: IEEE international ultrasonics symposium, pp 527–529

  • Feleppa EJ, Porter CR, Ketterling J, Lee P, Dasgupta S, Urban S, Kalisz A (2004) Recent developments in tissue-type imaging (tti) for planning and monitoring treatment of prostate cancer. Ultrason Imaging 26(3):163–72

    Google Scholar 

  • Feng Y, Yang F, Zhou X, Guo Y, Tang F, Ren F, Guo J, Ji S (2018) A deep learning approach for targeted contrast-enhanced ultrasound based prostate cancer detection. In: IEEE/ACM transactions on computational biology and bioinformatics, p 1

  • Fragou M, Karabinis A, Daphnis E, Labropoulos N, Karakitsos D (2011) Ultrasound imaging in vascular diseases. In: Minin IV, Minin OV (eds) Ultrasound imaging, chapter 10. IntechOpen, Rijeka

    Google Scholar 

  • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    MathSciNet  MATH  Google Scholar 

  • Fujioka T, Kubota K, Mori M, Kikuchi Y, Katsuta L, Kasahara M, Oda G, Ishiba T, Nakagawa T, Tateishi U (2019) Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Japan J Radiol 37(6):466–472

    Google Scholar 

  • Gers Felix A, Schraudolph Nicol N, Schmidthuber J (2002) Learning precise timing with lstm recurrent networks

  • Giannoglou VG, Stavrakoudis DG, Theocharis JB, Petridis V (2015) Genetic fuzzy rule based classification systems for coronary plaque characterization based on intravascular ultrasound images. Eng Appl Artif Intell 38:203–220

    Google Scholar 

  • Glotsos D, Kalatzis I, Theocharakis P, Georgiadis P, Daskalakis A, Ninos K, Zoumboulis P, Filippidou A, Cavouras D (2010) A multi-classifier system for the characterization of normal, infectious, and cancerous prostate tissues employing transrectal ultrasound images. Comput Methods Program Biomed 97(1):53–61

    Google Scholar 

  • Gustavo C, Nascimento Jacinto C, António F (2012) The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process 21(3):968–982

    MathSciNet  MATH  Google Scholar 

  • Gyan P, Rajendra AU, Vinitha SS, Swapna G, Ratna Y, Joy MR, Luca S, Ganapathy K, Giorgio M, Ayman E-B, Al ES, Michael B, Suri Jasjit S (2013) Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images. Tech Cancer Res Treat 12(6):545–557 PMID: 23745787

    Google Scholar 

  • Han SM, Lee HJ, Choi JY (2008) Computer-aided prostate cancer detection using texture features and clinical features in ultrasound image. J Digit Imaging 21(Suppl 1):S121–S133

    Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. In: IEEE transactions on systems, man and cybernetics, SMC-3:610–621

  • Hassan Tarek M, Mohammed E, El-Sayed S (2017) Diagnosis of focal liver diseases based on deep learning technique for ultrasound images. Arab J Sci Eng 42(8):3127–3140

    Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Computer vision and pattern recognition, pp 770–778

  • He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: European conference on computer vision, pp 630–645

  • Hinton Geoffrey E (2012) A practical guide to training restricted Boltzmann machines. Neural networks: tricks of the trade. Springer, Cham, pp 599–619

    Google Scholar 

  • Hinton GE, Krizhevsky A, Wang SD (2011) Transforming auto-encoders. In: International conference on artificial neural networks. Springer, Cham, pp 44–51

  • Hinton GE, Simon O, Yee-Whye T (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    MathSciNet  MATH  Google Scholar 

  • Horng M-H (2009) Multi-class support vector machine for classification of the ultrasonic images of supraspinatus. Expert Syst Appl 36(4):8124–8133

    Google Scholar 

  • https://captionhealth.com/

  • https://www.accessdata.fda.gov/cdrh_docs/pdf18/K181290.pdf

  • https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190442.pdf

  • https://www.accessdata.fda.gov/cdrh_docs/pdf19/K192388.pdf

  • https://www.accessdata.fda.gov/cdrh_docs/pdf8/K081148.pdf

  • https://www.accessdata.fda.gov/cdrh_docs/pdf11/P110006B.pdf

  • https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P150043

  • Huang X, Zhang Y, Qian M, Meng L, Xiao Y, Niu L, Zheng R, Zheng H (2016) Classification of carotid plaque echogenicity by combining texture features and morphologic characteristics. J Ultrasound Med 35(10):2253–2261

    Google Scholar 

  • Huang G, Liu Z, Weinberger KQ, van der Maaten L (2016) Densely connected convolutional networks. arXiv preprint arXiv:1608.06993

  • Hugo L, Michael M, Razvan P, Yoshua B (2012) Learning algorithms for the classification restricted boltzmann machine. J Mach Learn Res 13:643–669

    MathSciNet  MATH  Google Scholar 

  • Huynen A, Giesen R, de la Rosette J, Aarnink R, Debruyne F, Wijkstra H (1994) Analysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert system. Ultrasound Med Biol 20(1):1–10

    Google Scholar 

  • Imani F, Abolmaesumi P, Wu MZ, Lasso A, Burdette EC, Ghoshal G, Heffter T, Williams E, Neubauer P, Fichtinger G, Mousavi P (2013) Ultrasound-guided characterization of interstitial ablated tissue using rf time series: Feasibility study. IEEE Trans Biomed Eng 60(6):1608–1618

    Google Scholar 

  • Imani F, Daoud MI, Moradi M, Abolmaesumi P, Mousavi P (2011) Tissue classification using depth-dependent ultrasound time series analysis: in-vitro animal study. InSPIE Medical Imaging, p 79860F

  • Imani F, Wu MZ, Lasso A, Burdette EC, Daoud MI, Fitchinger G, Abolmaesumi P, Mousavi P (2011) Monitoring of tissue ablation using time series of ultrasound rf data. In: International conference on medical image computing and computer-assisted intervention (MICCAI), pp 379–386

  • Inan G, Elif DU (2006) A recurrent neural network classifier for Doppler ultrasound blood flow signals. Pattern Recognit Lett 27(13):1560–1571

    Google Scholar 

  • Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp 448–456

  • Jabbar SI, Day CR, Heinz N, Chadwick EK (2016) Using convolutional neural network for edge detection in musculoskeletal ultrasound images. In: Proceedings of international joint conference on neural networks (IJCNN), pp 4619–4626

  • Jang J, Park Y, Kim B, Lee SM, Kwon JY, Seo JK (2017) Automatic estimation of fetal abdominal circumference from ultrasound images. IEEE J Biomed Health Informatics 1

  • Jeon J, Choi JY, Lee S, Ro YM (2013) Multiple roi selection based focal liver lesion classification in ultrasound images. Expert Syst Appl 40(2):450–457

    Google Scholar 

  • Kagiyama N, Shrestha S, Cho JS, Khalil M, Singh Y, Challa A, Casaclang-Verzosa G, Sengupta PP (2020) A low-cost texture-based pipeline for predicting myocardial tissue remodeling and fibrosis using cardiac ultrasound. EBioMedicine 54

  • Kaizhi W, Chen X, Ding M (2014) Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik-Int J Light Electron Opt 125(15):4057–4063

    Google Scholar 

  • Kaplan Stuart S (2001) Clinical utility of bilateral whole-breast us in the evaluation of women with dense breast tissue. Radiology 221(3):641–649

    Google Scholar 

  • Karlapalem A, Givan AH (2019) Maria Fernandez del Valle, Miranda R. Fulton, and Jon D. Klingensmith. Classification of cardiac adipose tissue using spectral analysis of ultrasound radiofrequency backscatter. In: Byram BC, Ruiter NV (eds) Medical Imaging 2019: Ultrasonic Imaging and Tomography. volume 10955. International Society for Optics and Photonics, SPIE, pp 101–108

    Google Scholar 

  • Katouzian A, Sathyanarayana S, Baseri B, Konofagou EE, Carlier SG (2008) Challenges in atherosclerotic plaque characterization with intravascular ultrasound (ivus): from data collection to classification. IEEE Trans Inf Technol Biomed 12(3):315–327

    Google Scholar 

  • Khojaste A, Imani F, Moradi M, Berman D (2015) D. Robert Siemens, Eric E. Sauerberi, Alexander H. Boag, Purang Abolmaesumi, and Parvin Mousavi. Characterization of aggressive prostate cancer using ultrasound RF time series. In: Hadjiiski LM, Tourassi GD (eds) Medical Imaging 2015: Computer-Aided Diagnosis. volume 9414. International Society for Optics and Photonics, SPIE, pp 326–333

    Google Scholar 

  • Kozegar E, Soryani M, Behnam H, Salamati M, Tan T (2017) Breast cancer detection in automated 3d breast ultrasound using iso-contours and cascaded rusboosts. Ultrasonics 79:68–80

    Google Scholar 

  • Kozegar E, Soryani M, Behnam H, Salamati M, Tan T (2019) Computer aided detection in automated 3-d breast ultrasound images: a survey. Artif Intell Rev 1–23

  • Krittanawong C, Tunhasiriwet A, Zhang HJ, Wang Z, Aydar M, Kitai T (2017) Deep learning with unsupervised feature in echocardiographic imaging. J Am Coll Cardiol 69(16):2100–2101

    Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  • Kubota R, Kunihiro M, Suetake N, Uchino E, Hashimoto G, Hiro T, Matsuzaki M (2008) An intravascular ultrasound-based tissue characterization using shift-invariant features extracted by adaptive subspace som. Int J Biol Biomed Eng 2(2):79–88

    Google Scholar 

  • Kumon RE, Zhou Y, Yang K, Deng CX (2009) Spectral analysis of ultrasound backscatter for characterization of hifu lesions in cardiac tissue high-frequency imaging. In: IEEE international ultrasonics symposium, pp 244–247

  • Latha S, Samiappan Dhanalakshmi, Kumar R (2020) Carotid artery ultrasound image analysis: A review of the literature. In: Proceedings of the institution of mechanical engineers, Part H: journal of engineering in medicine, vol 234(5), pp 417–443. PMID: 31960771

  • Le Quoc V, Karpenko A, Ngiam J, Ng AY (2011) Ica with reconstruction cost for efficient overcomplete feature learning. In: Advances in neural information processing systems, pp 1017–1025

  • Lee W-L (2011) Ultrasonic liver tissue characterization by multiresolution feature vector and an ensemble of classifiers. Il J Inno Comput Info Control 7(11):6541–6558

    Google Scholar 

  • Lee W-L, Hsieh K-S (2010) A robust algorithm for the fractal dimension of images and its applications to the classification of natural images and ultrasonic liver images. Sig Process 90(6):1894–1904

    MATH  Google Scholar 

  • Lee W-L, Chen Y-C, Hsieh K-S (2003) Ultrasonic liver tissues classification by fractal feature vector based on m-band wavelet transform. IEEE Trans Med Imaging 22(3):382–392

    Google Scholar 

  • Lee J, Hwang YN, Kim GY, Kwon JY, Kim SM (2019) Automated classification of dense calcium tissues in gray-scale intravascular ultrasound images using a deep belief network. BMC Med Imaging 19(1):103

    Google Scholar 

  • Lekadir K, Galimzianova A, Betriu A, del Mar VM, Igual L, Rubin DL, Fernandez E, Radeva P, Napel S (2017) A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J Biomed Health Inf 21(1):48–55

    Google Scholar 

  • Lempitsky VS, Verhoek M, Noble JA, Blake A (2009) Random forest classification for automatic delineation of myocardium in real-time 3d echocardiography. In: International conference on functional imaging and modeling of the heart (FIMH), pp 447–456

  • Li H, Fang J, Liu S, Liang X, Yang X, Mai Z, Van MT, Wang T, Chen Z, Ni D (2020) Cr-unet: a composite network for ovary and follicle segmentation in ultrasound images. IEEE J Biomed Health Inf 24(4):974–983

    Google Scholar 

  • Liao W-X, He P, Hao J, Wang X-Y, Yang R-L, An D, Cui L-G (2019) Automatic identification of breast ultrasound image based on supervised block-based region segmentation algorithm and features combination migration deep learning model. IEEE J Biomed Health Inf

  • Liao Y-Y, Tsui P-H, Yeh C-K (2010) Classification of scattering media within benign and malignant breast tumors based on ultrasound texture-feature-based and kakagami-parameter images. J Med Biol Eng 30(5):307–312

    Google Scholar 

  • Liao Y-Y, Tsui P-H, Li C-H, Chang K-J, Kuo W-H, Chang C-C, Yeh C-K (2011) Classification of benign and malignant breast tumors by ultrasound b-scan and nakagami-based images. Med Phys 38(4):2198–2207

    Google Scholar 

  • Liau J, Goldberg D, Arif-T H (2019) Prostate cancer detection and diagnosis: role of ultrasound with MRI correlates. Curr Radiol Rep 7

  • Li H, Kumavor PD, Alqasemi U, Zhu Q (2014) Classification algorithm of ovarian tissue based on co-registered ultrasound and photoacoustic tomography. In: Proceedings of SPIE 8943, photons plus ultrasound: imaging and sensing

  • Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Laak JAVD, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Google Scholar 

  • Liu J-B, Goldberg BB (1999) 2-d and 3-d endoluminal ultrasound: vascular and nonvascular applications. Ultrasound Med Biol 25(2):159–173

    Google Scholar 

  • Liu T, Lizzi FL, Ketterling JA, Silverman RH, Kutcher GJ (2007) Ultrasonic tissue characterization via 2-d spectrum analysis: Theory and in vitro measurements. Med Phys 34(3):1037–46

    Google Scholar 

  • Liu T, Mansukhani MM, Benson MC, Ennis R, Yoshida E, Schiff PB, Zhang P, Zhou J, Kutcher GJ (2009) A feasibility study of novel ultrasonic tissue characterization for prostate-cancer diagnosis: 2d spectrum analysis of in vivo data with histology as gold standard. Med Phys 36(8):3504–11

    Google Scholar 

  • Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J (2010) Fully automatic and segmentation-robust classification of breast tumors based on local texture analysis of ultrasound images. Pattern Recognit 43(1):280–298

    MATH  Google Scholar 

  • Liu H, Tan T, van Zelst J, Mann R, Karssemeijer N, Platel B (2014) Incorporating texture features in a computer-aided breast lesion diagnosis system for automated three-dimensional breast ultrasound. J Med Imaging 1(2):024501

    Google Scholar 

  • Liu J, Jiang H, Chen-guang He Y, Wang WP, Ma H et al (2017) An assisted diagnosis system for detection of early pulmonary nodule in computed tomography images. J Med Syst 41(2):30

    Google Scholar 

  • Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX, Ni D, Wang T (2019) Deep learning in medical ultrasound analysis: a review. Engineering

  • Liu T, Xie S, Yu J, Niu L, Sun W (2017) Classification of thyroid nodules in ultrasound images using deep model based transfer learning and hybrid features. In: Proceedings of speech and signal processing (ICASSP) 2017 IEEE international conference on acoustics, pp 919–923

  • Lizzi FL, Greenebaum M, Feleppa EJ, Elbaum M, Coleman DJ (1983) Theoretical framework for spectrum analysis in ultrasonic tissue characterization. J Acoust Soc Am 73(4):1366–1373

    Google Scholar 

  • Lizzi FL, Ostromogilsky M, Feleppa EJ, Rorke MC, Yaremko MM (1987) Relationship of ultrasonic spectral parameters to features of tissue microstructure. IEEE Trans Ultrason Ferroelectr Freq Control 34(3):319–329

    Google Scholar 

  • Lo C, Shen Y-W, Huang C-S, Chang R-F (2014) Computer-aided multiview tumor detection for automated whole breast ultrasound. Ultrason Imaging 36(1):3–17

    Google Scholar 

  • Luo S, Kim E-H, Dighe M, Kim Y (2011) Thyroid nodule classification using ultrasound elastography via linear discriminant analysis. Ultrasonics 51(4):425–431

    Google Scholar 

  • Maggio S (2011) Analysis and modeling techniques for ultrasonic tissue characterization. PhD thesis, University of Bologna

  • Maggio S, Palladini A, De Marchi L, Alessandrini M, Speciale N, Masetti G (2010) Predictive deconvolution and hybrid feature selection for computer-aided detection of prostate cancer. IEEE Trans Med Imaging 29(2):455–464

    Google Scholar 

  • Malik BH, Klock JC (2019) Breast cyst fluid analysis correlations with speed of sound using transmission ultrasound. Acad Radiol 26(1):76–85

    Google Scholar 

  • Meng D, Zhang L, Cao G, Cao W, Zhang G, Hu B (2017) Liver fibrosis classification based on transfer learning and fcnet for ultrasound images. IEEE Access 5:5804–5810

    Google Scholar 

  • Milletari F, Ahmadi S-A, Kroll C, Plate A, Rozanski V, Maiostre J, Levin J, Dietrich O, Ertl-Wagner B, Botzel K, Navab N (2017) Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst 164:92–102

    Google Scholar 

  • Milunski MR, Mohr GA, Pérez EJ, Vered Z, Wear K A, Gessler C J, Sobel B E, Miller J G, Wickline S A, (1989) Ultrasonic tissue characterization with integrated backscatter. Acute myocardial ischemia, reperfusion, and stunned myocardium in patients. Circulation 80(3):491–503

    Google Scholar 

  • Mishra D, Chaudhury S, Sarkar M, Manohar S, Soin AS (2018) Segmentation of vascular regions in ultrasound images: a deep learning approach. In: Proceedings of IEEE international symposium on circuits and systems (ISCAS), pp 1–5

  • Mitterberger M, Horninger W, Aigner F, Pinggera GM, Steppan I, Rehder P, Frauscher F (2010) Ultrasound of the prostate. Cancer Imaging 10(1):40–48

    Google Scholar 

  • Mohamed SS, Salama MMA (2008) Prostate cancer spectral multifeature analysis using trus images. IEEE Trans Med Imaging 27(4):548–556

    Google Scholar 

  • Moharram MA, Lamberts RR, Whalley G, Williams Michael JA, Coffey S (2019) Myocardial tissue characterisation using echocardiographic deformation imaging. Cardiovasc Ultrasound 17(27)

  • Moon WK, Shen Y-W, Huang C-S, Chiang L-R, Chang R-F (2011) Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images. Ultrasound Med Biol 37(4):539–548

    Google Scholar 

  • Moradi MMP, Siemens DR, Sauerbrei EE, Isotalo PBA, Abolmaesumi P (2007) Discrete fourier analysis of ultrasound rf time series for detection of prostate cancer. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBS), pp 1339–1342

  • Moradi M, Mousavi P, Abolmaesumi P (2007) Computer-aided diagnosis of prostate cancer with emphasis on ultrasound-based approaches: a review. Ultrasound Med Biol 33(7):1010–1028

    Google Scholar 

  • Moradi M, Mousavi P, Boag A, Sauerbrei E, Siemens R, Abolmaesumi P (2009) Augmenting detection of prostate cancer in transrectal ultrasound images using svm and rf time series. IEEE Trans Biomed Eng 56(9):2214–2224

    Google Scholar 

  • Moradi M, Abolmaesumi P, Mousavi P (2010) Tissue typing using ultrasound rf time series: experiments with animal tissue samples. Med Phys 37(8):4401–13

    Google Scholar 

  • Moradi M, Mahdavi SS, Nir G, Jones EC, Goldenberg SL, Salcudean SE (2013) Ultrasound rf time series for tissue typing: First in vivo clinical results. In: SPIE medical imaging

  • Moradi M, Mousavi P, Abolmaesumi P(2007) Tissue characterization using fractal dimension of high frequency ultrasound rf time series. In: International conference on medical image computing and computer-assisted intervention (MICCAI), pp 900–908

  • Moradi M, Wachinger C, Fedorov A, Wells WM, Kapur T, Wolfsberger LD, Nguyen P, Tempany CM (2012) Mri confirmed prostate tissue classification with laplacian eigenmaps of ultrasound rf spectra. In: Third international workshop on machine learning in medical imaging, pp 19–26

  • Nair A, Kuban BD, Obuchowski N, Vince DG (2001) Assessing spectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data. Ultrasound Med Biol 27(1):1319–1331

    Google Scholar 

  • Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106(17):2200–2206

    Google Scholar 

  • Narula S, Shameer K, Mabrouk A, Dudley JT, Sengupta PP (2016) Machine-learning algorithms to automate morphological and functional assessments in 2d echocardiography. J Am College Cardiol 68(21):2287–2295

    Google Scholar 

  • Nitish S, Hinton Geoffrey E, Alex K, Ilya S, Ruslan S (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  • Noble JA (2010) Ultrasound image segmentation and tissue characterization. Proc Inst Mech Eng H: J Eng Med 224(2):307–316

    Google Scholar 

  • Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010

    Google Scholar 

  • Nothacker M, Duda V, Hahn M, Warm M, Degenhardt FM, Helmut, Weinbrenner S, Albert U-S (2009) Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. a systematic review. BMC Cancer, 9(1):335

  • Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    MATH  Google Scholar 

  • Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, Cook SA, de Marvao A, Dawes T, ORegan DP, et al (2018) Anatomically constrained neural networks (acnns): application to cardiac image enhancement and segmentation. IEEE Trans Medl Imaging 37(2):384–395

    Google Scholar 

  • Oliver Faust U, Acharya R, Meiburger KM, Molinari F, Koh JEW, Yeong CH, Kongmebhol P, Ng KH (2018) Comparative assessment of texture features for the identification of cancer in ultrasound images: a review. Bio Biomed Eng 38(2):275–296

    Google Scholar 

  • Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Google Scholar 

  • Patra A, Alison NJ (2020) Hierarchical class incremental learning of anatomical structures in fetal echocardiography videos. IEEE J Biomed Health Inf

  • Pazinato DV, Stein BV, de Almeida WR, de Werneck R, Júnior PRM, Penatti OAB, Torres RdS, Menezes FH, Rocha A (2016) Pixel-level tissue classification for ultrasound images. IEEE J Biomed Health Inf 20(1):256–267

    Google Scholar 

  • Pinto PA, Chung PH, Rastinehad AR, Baccala AA, Kruecker J, Benjamin CJ, Xu S, Yan P, Kadoury S, Chua C, Locklin JK, Turkbey B, Shih JH, Gates SP, Buckner C, Bratslavsky G, Linehan WM, Glossop ND, Choyke PL, Wood BJ (2011) Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol 186(4):1281–5

    Google Scholar 

  • Prior DL, Somaratne JB, Jenkins AJ, Yii M, Newcomb AE, Schalkwijk CG, BlackMary J, Kelly DJ, Campbell DJ (2015) Calibrated integrated backscatter and myocardial fibrosis in patients undergoing cardiac surgery. Open Heart 2(1)

  • Pujol O, Masip D (2009) Geometry-based ensembles: toward a structural characterization of the classification boundary. IEEE Trans Pattern Anal Mach Intell 31(6):1140–1146

    Google Scholar 

  • Pujol O, Rosales M, Radeva P, Fernández-Nofrerías E (2003) Intravascular ultrasound images vessel characterization using adaboost. In: International conference on functional imaging and modeling of the heart (FIMH), pp 242–251

  • Radeva P, Suri JS (2019) editors. Vascular and intravascular imaging trends, analysis, and challenges, volume 2. IOP Publishing, pp 2053–2563

  • Rajendra Acharya U, Rama Krishnan MM, Vinitha Sree S, Sanches J, Shafique S, Nicolaides A, Pedro LM, Suri JS (2013) Plaque tissue characterization and classification in ultrasound carotid scans: A paradigm for vascular feature amalgamation. IEEE Trans Instrum Measur 62(2):392–400

    Google Scholar 

  • Ravishankar H, Prabhu SM, Vaidya V, Singhal N (2016) Hybrid approach for automatic segmentation of fetal abdomen from ultrasound images using deep learning. In: Proceedings of IEEE 13th international symposium on biomedical imaging (ISBI), pp 779–782

  • Ravishankar H, Thiruvenkadam S, Venkataramani R, Vaidya V (2017) Joint deep learning of foreground, background and shape for robust contextual segmentation. In: International conference on information processing in medical imaging. Springer, Cham, pp 622–632

  • Ravishankar H, Venkataramani R, Thiruvenkadam S, Sudhakar P, Vaidya V (2017) Learning and incorporating shape models for semantic segmentation. Medical image computing and computer assisted intervention MICCAI 2017. Lecture Notes in Computer Science. Springer, Cham, pp 203–211

  • Ribeiro RSJ (2009) Fatty liver characterization and classification by ultrasound. In: Iberian conference on pattern recognition and image analysis, pp 354–361

  • Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th international conference on international conference on machine learning. Omnipress, pp 833–840

  • Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on Medical image computing and computer-assisted intervention. Springer, Cham, pp 234–241

  • Sathyanarayana S, Carlier S, Li W, Thomas L (2009) Characterisation of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals. EuroIntervention 5:133–139

    Google Scholar 

  • Sayed A, Layne G, Abraham J, Mukdadi OM (2014) 3-d visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo. Ultrasound Med Biol 40(7):1490–1502

    Google Scholar 

  • Scheipers U, Ermert H, Sommerfeld HJ, Garcia-Schurmann M, Senge T, Philippou S (2003) Ultrasonic multifeature tissue characterization for prostate diagnostics. Ultrasound Med Biol 29(8):1137–1149

    Google Scholar 

  • Seabra JCR, Ciompi F, Radeva P, Sanches JM (2012) Ultrasound imaging: advances and applications, chapter A Rayleigh Mixture Model for IVUS Imaging. Springer, Cham, pp 25–47

  • Seabra José CR, Ciompi F, Pujol O, Mauri J, Radeva P, Sanches JM (2011) Rayleigh mixture model for plaque characterization in intravascular ultrasound. IEEE Trans Biomed Eng 58(5):1314–1324

    Google Scholar 

  • Sheet D, Karamalis A, Eslami A, Noel P, Chatterjee J, Ray AK, Laine AF, Carlier SG, Navab N, Katouzian A (2014) Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound. Med Image Anal 18(1):103–117

    Google Scholar 

  • Sheet D, Karamalis A, Navab N, Laine AF, Chatterjee J, Ray AK, Carlier SG, Katouzian A (2012) Machine learning of ultrasonic statistical physics primal for tissue characterization in intravascular ultrasound

  • Shi J, Zhou S, Liu X, Zhang Q, Minhua L, Wang T (2016) Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194:87–94

    Google Scholar 

  • Siebers S, Schwabe M, Scheipers U, Welp C, Werner J, Ermert H (2004) Evaluation of ultrasonic texture and spectral parameters for coagulated tissue characterization. IEEE Int Ultrasonics Symp 3:1804–1807

    Google Scholar 

  • Simmons LAM, Autier P, Zát’ura Franti\(\hat{s}\)ek, Braeckman J, Peltier A, Romic I, Stenzl A, Treurnicht K, Walker T, Nir D, MooreCaroline M, Emberton M, (2012) Detection, localisation and characterisation of prostatecancer by prostate histoscanning\({}^{{\rm TM}}\). BJU Int 110(1):28–35

  • Smeenge M, de la Rosette JJ, Wijkstra H (2012) Current status of transrectal ultrasound techniques in prostate cancer. Curr Opin Urol 22(4):297–302

    Google Scholar 

  • Smistad E, Ostvik A, Haugen B. O, Lovstakken L (2017) 2D left ventricle segmentation using deep learning. In: Proceedings of IEEE international ultrasonics symposium (IUS), pp 1–4

  • Sundaresan V, Bridge CP, Ioannou C, Noble JA (2017) Automated characterization of the fetal heart in ultrasound images using fully convolutional neural networks. In: Proceedings of IEEE 14th international symposium on biomedical imaging (ISBI 2017), pp 671–674

  • Tan T, Platel B, Huisman H, Sánchez CI, Mus R, Karssemeijer N (2012) Computer-aided lesion diagnosis in automated 3-d breast ultrasound using coronal spiculation. IEEE Trans Med Imaging 31(5):1034–1042

    Google Scholar 

  • Tan T, Platel B, Twellmann T, van Schie G, Mus R, Grivegnée A, Mann RM, Karssemeijer N (2013) Evaluation of the effect of computer-aided classification of benign and malignant lesions on reader performance in automated three-dimensional breast ultrasound. Acad Radiol 20(11):1381–1388

    Google Scholar 

  • Tan T, Platel B, Mus R, Tabar L, Mann RM, Karssemeijer N (2013) Computer-aided detection of cancer in automated 3-d breast ultrasound. IEEE Trans Med Imaging 32(9):1698–1706

    Google Scholar 

  • Tan T, Mordang J-J, Zelst J, Grivegnée A, Gubern-Mérida A, Melendez J, Mann RM, Zhang W, Platel B, Karssemeijer N (2015) Computer-aided detection of breast cancers using haar-like features in automated 3d breast ultrasound. Med Phys 42(4):1498–1504

    Google Scholar 

  • Tan T, Mordang J-J, van Zelst J, Grivegnée A, Gubern-Mérida A, Melendez J, Mann RM, Zhang W, Platel B, Karssemeijer N (2015) Computer-aided detection of breast cancers using haar-like features in automated 3d breast ultrasound. Med Phys 42(4):1498–1504

    Google Scholar 

  • Thijssen JM (2003) Ultrasonic speckle formation, analysis and processing applied to tissue characterization. Pattern Recognit Lett 24(4–5):659–675

    Google Scholar 

  • Tsui P-H, Liao Y-Y, Chang C-C, Kuo W-H, Chang K-J, Yeh C-K (2010) Classification of benign and malignant breast tumors by 2-d analysis based on contour description and scatterer characterization. IEEE Trans Med Imaging 29(2):513–22

    Google Scholar 

  • Tuceryan M (1994) Moment-based texture segmentation. Pattern Recognit Lett 15(7):659–668

    Google Scholar 

  • Uniyal N, Imani F, Tahmasebi A, Choyke P, Turkbey B, Pinto P, Wood B, Xu S, Kwak JT, Yan P, Kruecker J, Bharat S, Agarwal H, Abolmaesumi P, Mousavi P, Moradi M (2014) Ultrasound-based predication of prostate cancer in mri-guided biopsy. In: The 3rd MICCAI workshop on clinical image-based procedures: translational research in medical imaging

  • Unser M (1986) Sum and difference histograms for texture classification. IEEE Trans Pattern Anal Mach Intell 8(1):118–125

    Google Scholar 

  • van Sloun RJG, Demi L, Shan C, Mischi M (2015) Ultrasound coefficient of nonlinearity imaging. IEEE Trans Ultrason Ferroelectr Freq Control 62(7):1331–1341

    Google Scholar 

  • van Sloun RJG, Demi L (2019) Localizing b-lines in lung ultrasonography by weakly-supervised deep learning, in-vivo results. IEEE J Biomed Health Inf

  • van Zelst JCM, Balkenhol M, Tan T, Rutten M, Imhof-Tas M, Bult P, Karssemeijer N, Mann RM (2017) Sonographic phenotypes of molecular subtypes of invasive ductal cancer in automated 3-d breast ultrasound. Ultrasound Med Biol 43(9):1820–1828

    Google Scholar 

  • van Zelst JCM, Tan T, Platel B, De Jong M, Steenbakkers A, Mourits M, Grivegnee A, Borelli C, Karssemeijer N, Mann RM (2017) Improved cancer detection in automated breast ultrasound by radiologists using computer aided detection. Eur J Radiol 89:54–59

    Google Scholar 

  • van Zelst JCM, Tan T, Clauser P, Domingo A, Dorrius MD, Drieling D, Golatta M, Gras F, de Jong M, Pijnappel R et al (2018) Dedicated computer-aided detection software for automated 3d breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts. Eur Radiol 28(7):2996–3006

    Google Scholar 

  • Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  • Wagner RF, Smith SW, Sandrik JM, Lopez H (1983) Statistics of speckle in ultrasound b-scans. IEEE Trans Sonics Ultrasonics 30(3):156–163

    Google Scholar 

  • Wang Y, Wang N, Xu M, Yu J, Qin C, Luo X, Yang X, Wang T, Li A, Ni D (2019) Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound. IEEE Trans Med Imaging

  • Wan J, Zhou S (2010) Features extraction based on wavelet packet transform for b-mode ultrasound liver images. In: International Congress on image and signal processing, pp 949–955

  • Williams DZRJ (1989) A learning algorithm for continually running fully recurrent neural networks

  • Wright M, Harks E, Deladi S, Suijver F, Barley M, van Dusschoten A, Fokkenrood S, Zuo F, Sacher F, Hocini M, Haïssaguerre M, Jaïs P (2011) Real-time lesion assessment using a novel combined ultrasound and radiofrequency ablation catheter. Heart Rhythm 8(2):304–312

    Google Scholar 

  • Wu L, Xin Y, Li S, Wang T, Heng P-A, Ni D (2017) Cascaded fully convolutional networks for automatic prenatal ultrasound image segmentation. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), pp 663–666. IEEE

  • Wu L, Xin Y, Li S, Wang T, Heng P. A, Ni D (2017) Cascaded fully convolutional networks for automatic prenatal ultrasound image segmentation. In: Proceedings of IEEE 14th international symppsium on biomedical imaging (ISBI 2017), pp 663–666

  • Wysock JS, Alex X, Orczyk C, Taneja SS (2017) Histoscanningtm to detect and characterize prostate cancer–a review of existing literature. Current Urology Reports 18

  • Xian G (2010) An identification method of malignant and benign liver tumors from ultrasonography based on glcm texture features and fuzzy svm. Expert Syst Appl 37(10):6737–6741

    MathSciNet  Google Scholar 

  • Xing J, Li Z, Wang B, Qi Y, Yu B, Zanjani F. G, Zheng A, Duits R, Tan T (2020) Lesion segmentation in ultrasound using semi-pixel-wise cycle generative adversarial nets. In: IEEE/ACM transactions on computational biology and bioinformatics, p 1

  • Yang H, Shan C, Pourtaherian A, Kolen AF, de With PHN (2019) Catheter segmentation in three-dimensional ultrasound images by feature fusion and model fitting. J Med Imaging 6(1):015001

    Google Scholar 

  • Yang H, Shan C, Kolen AF, de With PHN (2019) Catheter localization in 3d ultrasound using voxel-of-interest-based convnets for cardiac intervention. Int J Comput Assist Radiol Surg 14(6):1069–1077

    Google Scholar 

  • Yang H, Shan C, Tan T, Kolen AF, de With Peter HN (2019) Transferring from ex-vivo to in-vivo: instrument localization in 3d cardiac ultrasound using pyramid-unet with hybrid loss. In: Dinggang S, Tianming L, Terry MP, Lawrence HS, Caroline E, Sean Z, Pew-Thian Y, Ali K (eds) Medical image computing and computer assisted intervention—MICCAI 2019. Springer, Cham, pp 263–271

  • Yang H, Shan C, Tan T, Kolen AF, et al (2019) Transferring from ex-vivo to in-vivo: Instrument localization in 3d cardiac ultrasound using pyramid-unet with hybrid loss. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 263–271

  • Yap MH, Pons G, Marti J, Ganau S, Sentis M, Zwiggelaar R, Davison AK, Marti R (2018) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inf 22(4):1218–1226

    Google Scholar 

  • Yap M, Gerard P, Joan M, Sergi G, Melcior S, Reyer Z, Adrian KD, Robert M (2017) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inf

  • Yeh WC, Jeng YM, Li CH, Lee PH, Li PC (2005) Liver steatosis classification using high-frequency ultrasound. Ultrasound Med Biol 31(5):599–605

    Google Scholar 

  • Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? Eprint Arxiv 27:3320–3328

    Google Scholar 

  • Zhang Q, Xiao Y, Dai W, Suo J, Wang C, Shi J, Zheng H (2016) Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 72:150–157

    Google Scholar 

  • Zhang E, Seiler S, Chen M, Lu W, Gu X (2020) Birads features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis. Phys Med Biol

  • Zhang Y, Ying MTC, Yang L, Ahuja AT, Chen DZ (2016) Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images. In: 2016 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 443–448

  • Zhu Y, Fu Z, Fei J (December 2017) An image augmentation method using convolutional network for thyroid nodule classification by transfer learning. In: Proceedings of 3rd IEEE international conference on computer and communications (ICCC), pp 1819–1823

  • Zyuzin V, Sergey P, Mukhtarov A, Chumarnaya T, Solovyova O, Bobkova A, Myasnikov V (2018) Identification of the left ventricle endocardial border on two-dimensional ultrasound images using the convolutional neural network unet. In: Proceedings of radioelectronics and information technology (USBEREIT) 2018 Ural symposium on biomedical engineering, pp 76–78

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caifeng Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, C., Tan, T., Han, J. et al. Ultrasound tissue classification: a review. Artif Intell Rev 54, 3055–3088 (2021). https://doi.org/10.1007/s10462-020-09920-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-020-09920-8

Keywords

Navigation