Skip to main content
Log in

The Brylinski Filtration for Affine Kac-Moody Algebras and Representations of \({\mathscr{W}}\)-algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We study the Brylinski filtration induced by a principal Heisenberg subalgebra of an affine Kac-Moody algebra \(\mathfrak {g}\), a notion first introduced by Slofstra. The associated graded space of this filtration on dominant weight spaces of integrable highest weight modules of \(\mathfrak {g}\) has Hilbert series coinciding with Lusztig’s t-analog of weight multiplicities. For the level 1 vacuum module L(Λ0) of affine Kac-Moody algebras of type A, we show that the Brylinski filtration may be most naturally understood in terms of representations of the corresponding \({\mathscr{W}}\)-algebra. We show that the sum of dominant weight spaces of L(Λ0) in the principal vertex operator realization forms an irreducible Verma module of \({\mathscr{W}}\) and that the Brylinski filtration is induced by the Poincaré-Birkhoff-Witt basis of this module. This explicitly determines the subspaces of the Brylinski filtration. Our basis may be viewed as the analog of Feigin-Frenkel’s basis of \({\mathscr{W}}\) for the \({\mathscr{W}}\)-action on the principal rather than on the homogeneous realization of L(Λ0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Arakawa, Tomoyuki: Representation theory of \({\mathscr{W}}\)-algebras. Invent. Math. 169(2), 219–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakalov, Bojko, Kac, Victor G.: Twisted modules over lattice vertex algebras. In: Lie Theory and Its Applications in Physics V, pp 3–26. World Sci. Publ., River Edge (2004)

  3. Bakalov, B., Milanov, T.: \({\mathscr{W}}\)-constraints for the total descendant potential of a simple singularity. Compos. Math. 149(5), 840–888 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bershtein, Mikhail, Gavrylenko, Pavlo, Marshakov, Andrei: Twist-field representations of \({\mathscr{W}}\)-algebras, exact conformal blocks and character identities. J. High Energ. Phys. 108 (2018)

  5. Braverman, Alexander, Finkelberg, Michael: Pursuing the double affine Grassmannian I: Transversal slices via instantons on Ak-singularities. Duke. Math. J. 152(2), 175–206 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Broer, Bram: Line bundles on the cotangent bundle of the flag variety. Invent. Math. 113(1), 1–20 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brylinski, R.-K.: Limits of weight spaces, Lusztig’s q-analogs, and fiberings of adjoint orbits. J. Am. Math. Soc. 2(3), 517–533 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Cherednik, Ivan: Difference Macdonald-Mehta conjecture. Internat. Math. Res. Notices (10):449–467 (1997)

  9. Dong, Chongying, Mason, Geoffrey: Nonabelian orbifolds and the Boson-Fermion correspondence. Comm. Math Phys. 163(3), 523–559 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, Chongying, Nagatomo, Kiyokazu: Automorphism groups and twisted modules for lattice vertex operator algebras. In: Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), volume 248 of Contemp. Math., pp 117–133. Amer. Math. Soc., Providence (1999)

  11. Feigin, Boris, Frenkel, Edward: Integrals of motion and quantum groups. In: Integrable systems and quantum groups (Montecatini Terme, 1993), volume 1620 of Lecture Notes in Math., pp 349–418. Springer, Berlin (1996)

  12. Frenkel, Edward, Kac, Victor, Radul, Andrey, Wang, Weiqiang: \({\mathscr{W}}_{1+\infty }\) and \({\mathscr{W}}(\mathfrak {gl}_{N})\) with central charge N. Comm. Math. Phys. 170(2), 337–357 (1995)

    Article  MathSciNet  Google Scholar 

  13. Frenkel, Edward, Kac, Victor, Wakimoto, Minoru: Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction. Comm. Math. Phys. 147(2), 295–328 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frenkel, Igor, Lepowsky, James, Meurman, Arne: Vertex operator algebras and the Monster, volume 134 of Pure and Applied Mathematics. Academic Press, Inc, Boston (1988)

    MATH  Google Scholar 

  15. Frenkel, Igor B., Huang, Yi-Zhi, Lepowsky, James: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104 (494), viii+ 64 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Frenkel, Igor B., Kac, Victor G.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math. 62(1), 23–66 (1980/81)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gupta, Ranee K. : Characters and the q-analog of weight multiplicity. J. London Math. Soc. (2) 36(1), 68–76 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Joseph, Anthony, Letzter, Gail, Zelikson, Shmuel: On the Brylinski-Kostant filtration. J. Amer. Math. Soc. 13(4), 945–970 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kac, Victor G., algebras, Infinite-dimensional: Dedekind’s η-function, classical Möbius function and the very strange formula. Adv. in Math. 30(2), 85–136 (1978)

    Article  MathSciNet  Google Scholar 

  20. Kac, Victor G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  21. Kac, Victor G.: Vertex Algebras for Beginners, volume 10 of University Lecture Series, 2nd edn. American Mathematical Society, Providence (1998)

    Google Scholar 

  22. Kac, Victor G., Kazhdan, David A., Lepowsky, James, Wilson, Robert L.: Realization of the basic representations of the Euclidean Lie algebras. Adv. in Math. 42(1), 83–112 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kac, Victor G., Dale, H.: Peterson, 112 constructions of the basic representation of the loop group of E8. In: Symposium on Anomalies, Geometry, Topology (Chicago 1985), pp 276–298. World Sci. Publ., Singapore (1985)

  24. Kac, Victor G., Raina, Ashok K.: Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, volume 2 of Advanced Series in Mathematical Physics. World Scientific Publishing Co., Inc., Teaneck (1987)

    MATH  Google Scholar 

  25. Kato, S.: Spherical functions and a q-analogue of Kostant’s weight multiplicity formula. Invent. Math. 66(3), 461–468 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lepowsky, James: Calculus of twisted vertex operators. Proc. Nat. Acad. Sci. U.S.A. 82(24), 8295–8299 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lusztig, George: Singularities, character formulas, and a q-analog of weight multiplicities. In: Analysis and topology on singular spaces, II, III (Luminy, 1981), volume 101 of Astérisque, pp 208–229. Soc. Math. France, Paris (1983)

  28. Slofstra, W.: A Brylinski filtration for affine Kac–Moody algebras. Adv. Math. 229(2), 968–983 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Viswanath, Sankaran: Kostka-Foulkes polynomials for symmetrizable Kac-Moody algebras. SĂ©m. Lothar. Combin., 58:Art B58f (2008)

  30. Zhu, Yongchang: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9(1), 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Bojko Bakalov for useful discussions and pointers to relevant literature at an early stage of this work. The authors also thank an anonymous referee whose comments helped improve the exposition. Sachin Sharma also thanks the Institute of Mathematical Sciences, where parts of this work were done, for its excellent hospitality.

Funding

Partial financial support was received from the Department of Science and Technology, Government of India through grants EMR/2016/001997 (SG) and MTR/2019/000071 (SV), from the Department of Atomic Energy, Government of India under a XII plan project (SV) and from the Indian Institute of Technology Kanpur through a faculty initiation grant (SS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankaran Viswanath.

Additional information

Presented by: Anne Moreau

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindarajan, S., Sharma, S.S. & Viswanath, S. The Brylinski Filtration for Affine Kac-Moody Algebras and Representations of \({\mathscr{W}}\)-algebras. Algebr Represent Theor 26, 491–512 (2023). https://doi.org/10.1007/s10468-021-10101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-021-10101-6

Keywords

Mathematics Subject Classification (2010)

Navigation