Skip to main content
Log in

Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A reliable driving scheme that can compensate for the inherent instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) is essential for implementation of large-area devices including displays and sensor arrays for bio-imaging applications. In particular, for high precision and high-resolution devices, the technique should be accurate and fast. A new driving scheme is presented that enables control of the DC and transient shift in the threshold voltage (V T ) and gate voltage of drive/amplifier TFT, while fulfilling the timing requirements for the different applications. The transient shift in the gate voltage has been known to contribute as much as 10% error in controlling the DC shift in the V T whereas it is less than 0.5% for the driving scheme presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nathan, A., Kumar, A., Sakariya, K., Servati, P., Sambandan, S., Karim, K. S., & Striakhilev, D. (2004). Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic. IEEE Journal of Solid State Circuits, 39, 1477–1486.

    Article  Google Scholar 

  2. Nathan, A., Chaji, G. R., & Ashtiani, S. J. (2005). Driving schemes for a-Si and LTPS AMOLED displays. IEEE Journal of Display Technology, 1, 267–277, Dec.

    Article  Google Scholar 

  3. Karim, K. S., Nathan, A., & Rowlands, J. A. (2003). Amorphous silicon active pixel sensor readout circuit for digital imaging. IEEE Transactions on Electron Devices, 50(1) 200–208.

    Article  Google Scholar 

  4. Powell, M. J., Berkel, C., & Hughes, J. R. (1989). Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors. Journal of Applied Physics Letters, 54, 1323–1325.

    Article  Google Scholar 

  5. Aziz, H., Popovic, Z. D., Hu, N., Hor, A., & Xu, G. (1999). Degradation mechanism of small molecule-based organic light-emitting devices. Science, 283, 1900–1902.

    Article  Google Scholar 

  6. Sheu, B. J., & Hu, C. (1984). Switch-induced error voltage on a switched capacitor. IEEE Journal of Solid-State Circuits, Sc-19, 519–525.

    Article  Google Scholar 

  7. Wegmann, G., Vitoz, E. A., & Rahali, F. (1987). Charge injection in analog MOS switches. IEEE Journal of Solid-State Circuits, Sc-22, 1091–1097.

    Article  Google Scholar 

  8. Chaji, G. R., Safavian, N., & Nathan, A. (2005). Dynamic-effect compensating technique for stable a-Si:H AMOLED displays. Proceedings of IEEE MIDWEST, Cincinnati, USA, Aug. 2005, pp. 786–789.

  9. Safavian, N., Chaji, G. R., Nathan, A., & Rowlands, J. A. (2006). Three-TFT image sensor for real-time digital X-ray imaging. IEE Electronics Letters, 42(3) 31–32.

    Article  Google Scholar 

  10. Sanford, J. L. & Libsch, F. R. (2003). TFT AMOLED Pixel Circuits and Driving Methods. In SID Int. Symposium, Baltimore, May 2003, pp. 10–13.

  11. He, Y., Hattori, R., & Kanicki, J. (2001). Improved a-Si:H TFT circuits for active-matrix organic light emitting displays. IEEE Transactions on Electron Devices, 48(7) 1322–1325.

    Article  Google Scholar 

  12. Ashtiani, S. J., Servati, P., Striakhilev, D., & Nathan, A. (2005). A 3-TFT current-programmed pixel circuit for active-matrix organic light-emitting diode displays. IEEE Transactions on Electron Devices, 52(7), 1514–1518.

    Article  Google Scholar 

  13. Servati, P., & Nathan, A. (2002). Modeling of the reverse characteristics of a-Si:H TFTs. IEEE Transactions on Electron Devices, 49(5) 812–819.

    Article  Google Scholar 

  14. Kabir, M. Z., Kasap, S. O., Zhao, W., & Rowlands, J. A. (2003). Direct conversion X-ray sensors: sensitivity, DQE and MTF. IEE Proceedings Circuits Devices and Systems, 150(4), 258–266.

    Article  Google Scholar 

  15. Razavi, B. (2001) Design of analog CMOS integrated circuits (1st ed.). McGraw-Hill.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Reza Chaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaji, G.R., Safavian, N. & Nathan, A. Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices. Analog Integr Circ Sig Process 56, 143–151 (2008). https://doi.org/10.1007/s10470-007-9082-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-007-9082-4

Keywords

Navigation