Skip to main content
Log in

Comparative study of gigahertz CMOS LC quadrature voltage-controlled oscillators with relevance to phase noise

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This review paper presents a comparative study of published integrated submicron CMOS quadrature voltage-controlled oscillator designs, based on LC resonator tanks operating at gigahertz frequencies. Although special reference to phase noise reduction is made, the comparison also concerns issues such as power consumption, tuning range and the phase accuracy of the quadrature signals. The effect of supply voltage reduction on the choice of the oscillator topology is also included in the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Crols, J., & Steyaert, S. J. (1995). A Single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology. IEEE Journal of Solid-State Circuits, C-30, 1483–1492.

    Article  Google Scholar 

  2. Chung, Y. W., & Kao, H. S. (2002). A 2-V low power CMOS direct-conversion quadrature voltage-controlled oscillator and RF amplifier for GHz RF transmitter applications. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, C-49, 123–134.

    Article  Google Scholar 

  3. Loke, A., & Ali, F. (2002). Direct conversion radio for digital mobile phones-design issues, status and trends. IEEE Transactions on Microwave Theory and Techniques, C-50, 2422–2435.

    Article  Google Scholar 

  4. Crols, J., & Steyaert, M. S. J. (1998). Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, C-45, 256–282.

    Google Scholar 

  5. Cho, T., Kang, D., Dow, S., Heng, C.-H., & Song, B. (2003). A 2.4 GHz dual-mode 0.18 μm CMOS transceiver for bluetooth and 802.11b. IEEE Int. Solid-State Conf. Dig. Tech. Papers, 2003, pp. 88–89.

  6. Yao, C. W., & Willson, A. N. (2006). A Phase-noise reduction technique for quadrature LC-VCO with phase-to-amplitude noise conversion. IEEE Int. Solid-State Circuits Conference, 2006, pp. 701–710.

  7. Takauchi, H., Tamura, H., Matsubara, S., Kibuno, M., Doi, Y., Chiba, T., Anbutsu, H., Yamaguchi, H., Mori, T., Takatsu, M., Gotoh, K., Sakai, T., & Yamamura, T. (2003). A CMOS multichannel 10 Gb/s transceiver. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2003, pp. 72–73.

  8. Zheng, D., Jin, X., Cheung, E., Rana, M., Song, G., Jiang Y., Sutu, Y.-H., & Wu, B. (2002). A quad 3.125 Gb/s/channel transceiver with analog phase rotators. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2002, pp. 70–71.

  9. Fenk, J., Birth, W., Irvine, R. G., Sehrig, P., & Schön, K. R. (1996). An RF front end for digital mobile radio. In Proc. IEEE Bipolar Circuits and Technology Meeting, September 1996, pp. 346–347.

  10. Zargari, M., Terrovitis, M., Jen, S. H.-M., Kaczynski, B. J., Lee, M., Mack, M. P., Mehta, S. S., Mendis, S., Onodera, K., Samavati, H., Si, W. W., Singh, K., Tabatabaei, A., Weber, D., Su, D. K., & Wooley, B. A. (2004). A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g wireless LAN. IEEE Solid-State Circuits, C-39, 2239–2249.

    Article  Google Scholar 

  11. Song, E., Koo, Y., Jung, Y. J., Lee, D.-H., Chu, S., & Chae, S.-I. (2005). A 0.25 um CMOS quad-band GSM RF transceiver using an efficient LO frequency plan. IEEE Journal of Solid State Circuits, C-40, 1094–1106.

    Article  Google Scholar 

  12. Maligeorgos, J. P., & Long, J. R. (2000). Low voltage 5.1–5.8 GHz image reject receiver. IEEE Journal of Solid State Circuits, C-35, 1917–1926.

    Article  Google Scholar 

  13. Tsukahara, T., & Yamada, J. (2000). 3 to 5 GHz quadrature modulator and demodulator using a wideband frequency-doubling phase shifter. In Proc. IEEE Int. Solid State Circuits Conference, February 2000, pp. 384–385.

  14. Steyaert, M., Janssens, J., De Muer, B., Borremans, M., & Itoh, N. (2000). A 2-V CMOS cellular transceiver front end. IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers, February 2000, pp. 142–143.

  15. Borremans, M. A. F., De Ranter, C. R. C., & Steyaert, S. J. (1999). A CMOS dual-channel, 100 MHz to 1.1 GHz transmitter for cable applications. IEEE Journal of Solid-State Circuits, C-34, 1904–1913.

    Article  Google Scholar 

  16. Koukab, A., Lei, Y., & Declercq, M. J. (2006). A GSM-GPRS/UMTS FDD-TDD/WLAN 802.11a-b-g multi-standard carrier generation system. IEEE Journal of Solid State Circuits, C-41, 1513–1521.

    Article  Google Scholar 

  17. Sanduleanu, M. A. T., & Frambach, J. P. (2001). 1 GHz tuning range, low phase noise, LC oscillator with replica biasing common-mode control and quadrature outputs. In Proc. ESSCIRC, September 2001, pp. 506–509.

  18. Lin, C. C., & Wang, C. K. (2005). A 1-V 27mW 10-GHz LC-NOR-Ring QVCO for UWB-OFDM direct frequency synthesizer. Asian Solid-State Circuits Conference, November 2005, pp. 437–440.

  19. Chen, W. Z., Kuo, C. L., & Liu, C. C. (2003). 10 GHz quadrature-phase voltage-controlled oscillator and prescaler. In Proc. ESSCIRC, 2003, pp. 361–364.

  20. Andreani, P. P., & Wang, X. (2004). On the phase-noise and phase-error performances of multiphase LC CMOS VCOs. IEEE Journal of Solid State Circuits, C-39, 1883–1893.

    Article  Google Scholar 

  21. Li, S., Kipnis, I., & Ismail, M. (2003). A 10-GHz CMOS quadrature LC-VCO for multirate optical applications. IEEE Journal of Solid-State Circuits, C-38, 1626–1634.

    Google Scholar 

  22. Elsayed, A. M., & Elmasry, M. I. (2001). Low phase noise LC quadrature VCO using coupled tank resonators in a ring structure. IEEE Journal of Solid State Circuits, C-36, 701–705.

    Article  Google Scholar 

  23. Rofougaran, A., Rael, J., Rofougaran, M., & Abidi, A. (1996). A 900 MHz CMOS LC-oscillator with quadrature outputs. In Proc. IEEE Int. Solid State Circuits Conference (ISSCC) Dig. Tech. Papers, February 1996, pp. 392–393.

  24. Lee, T. H. (1998). The design of CMOS radio-frequency integrated circuits. New York: Cambridge University Press.

    Google Scholar 

  25. Wang, J., Tan, J., & Wing, O. (2002). Theory of cross-coupled oscillator system for RF quadrature generation. In Proc. of 1st IEEE International Conference on Circuits and Systems for Communications, 2002, pp. 362–365.

  26. Andreani, P., Bonfanti, A., Romano, L., & Samori, C. (2002). Analysis and design of a 1.8 GHz CMOS LC quadrature VCO. IEEE Journal of Solid State Circuits, C-37, 1737–1747.

    Article  Google Scholar 

  27. Romano, L., Levantino, S., Bonfanti, A., Samori, C., & Lacaita, A. L. (2004). Phase noise and accuracy in quadrature oscillators. In Proc. of the 2004 International Symposium on Circuits and Systems, vol. C-1, pp. 161–164.

  28. Chamas, I. R., & Raman, S. (2004). A comprehensive analysis of quadrature signal synthesis in cross-coupled RF VCOs. IEEE Transactions on circuits and systems-I: Regular Papers, C-54, 689–704.

    Google Scholar 

  29. Andreani, P. (2006). A time-variant analysis of the 1/f2 phase noise in CMOS parallel LC-tank quadrature oscillators. IEEE Transactions on Circuits and Systems-I: Regular papers, C-53, 1749–1760.

    Article  Google Scholar 

  30. Vancorenland, P., & Steyeart, M. S. J. (2002). A 1.57 GHz fully integrated very low phase noise quadrature VCO. IEEE Journal of Solid State Circuits, C-37, 653–656.

    Article  Google Scholar 

  31. Mazzanti, A., & Svelto, F. (2006). A 1.8-GHz injection-locked quadrature CMOS VCO with low phase noise and high phase accuracy. IEEE Transactions on circuits and systems-I: Regular papers, C-53, 554–560.

    Article  Google Scholar 

  32. Tiebout, M. L. (2001). Low power low phase noise differentially tuned quadrature VCO design in standard CMOS. IEEE Journal of Solid State Circuits, C-36, 1018–1024.

    Article  Google Scholar 

  33. Chang, J. Y., Wu, C. H., & Liu, S. I. (2005). A 2.4 GHz CMOS quadrature VCO for 2.4 GHz WLAN/bluetooth applications. Asian Solid-State Circuits Conference, November, 2005, pp. 493-496.

  34. Chang, J. Y., Wu, C. H., & Liu, S. I. (2005). A low-phase-noise low-phase-error 2.4 GHz CMOS quadrature VCO. Asian Solid-State Circuits Conference, November 2005, pp. 281-284.

  35. Gil, J., Kwon, I., & Shin, H. (2003). CMOS implementation of a 2.4-GHz switch mixer and quadrature VCO. Journal of Korean Physical Society, C-42, 241–245.

    Google Scholar 

  36. Jerng, A., & Sodini, C. G. (2005). The impact of device type and sizing on phase noise mechanisms. IEEE Journal of Solid State Circuits, C-40, 360–369.

    Article  Google Scholar 

  37. Andreani, P. (2002). A low-phase-noise, low phase error 1.8 GHz quadrature CMOS VCO. In Proc. ISSCC 2002, February 2002, pp. 290–291.

  38. Ravi, A., Soumyanath, K., Carley, L. R., & Bishop, R. (2002). An Integrated 10/5 GHz injection-locked quadrature LC VCO in a 0.18 μm digital CMOS process. European Solid State Research Conference (ESSCIRC), September 2002, pp. 1–4.

  39. Giernik, S. L. J., Levantino, S., Frye, R. C., Samori, C., & Boccuzzi, V. (2003). A low phase noise 5-GHz CMOS quadrature VCO using Superharmonic coupling. IEEE Journal of Solid State Circuits, C-38, 1148–1154.

    Google Scholar 

  40. Kinget, P. (1999). Integrated GHz voltage-controlled oscillators. In W. Sanson, J. Huijsing, & R. Van de Plassche (Eds.), Analog circuit design: (X)DSL and other communication systems; RF MOST models; integrated filters and oscillators (pp. 353–381). Boston MA: Kluwer.

    Google Scholar 

  41. Cho, Y. H., Tsai, M. D., Chang, Y. Y., & Wang, H. (2005). A wide-band low noise quadrature CMOS VCO. Asian Solid-State Circuits Conference, November 2005, pp. 325–328.

  42. Andreani, P. (2002). A 2 GHz 17% tuning range quadrature CMOS VCO with high Figure of Merit and a 0.6 degree phase error. In Proc. ESSCIRC, September 2002, pp. 815–818.

  43. Wang, X., & Andreani, P. (2002). A 2 GHz low phase noise low phase error CMOS quadrature VCO. In Proc. NORCHIP, 2002, pp. 303–308.

  44. Ching Tsai, Y., Shen, Y. S., & Jou, C. F. (2007). A low-power quadrature VCO using current-reused technique and back-gate coupling. Progress in Electromagnetics Research Symposium, Bejing, China, March 2007, pp. 192–196.

  45. Hsu, Y. C., & Lu, L. H. (2005). A 9-GHz quadrature-phase VCO in 0.18-μm CMOS. Bulletin of the college of Engineering, N.T.U, C-93, 17–21.

    Google Scholar 

  46. Jeong, C. Y., Lee, M. Y., & Yoo, C. (2005). Low-phase noise LC-tank quadrature voltage controlled oscillator. Asian Solid-State Circuits Conference, November 2005, pp. 269–272.

  47. Baek, D., Song, T., Yoon, E., & Hong, S. (2003). 8-GHz CMOS quadrature VCO using transformer-based LC tank. IEEE Microwave and Wireless Components letters, C-13, 446–448.

    Article  Google Scholar 

  48. Alan, W. L., & Luong, H. C. (2006). A 1V 17 GHz 5mW quadrature CMOS VCO based on transformer coupling. IEEE International Conference Digest of Technical Papers, February 2006, pp. 711–720.

  49. Ravi, A., Soumyanath, K., Bishop, R. E., Bloechel, B. A., & Carley, L. R. (2003). An optimally transformer coupled, 5 GHz Quadrature VCO in a 0.18 μm digital CMOS process. Symposium on VLSI Circuits Digest of Technical Papers, 2003, pp. 141–144.

  50. Troedsson, N., & Sjöland, H. (2005). A distributed capacitance analysis of co-planar inductors for a CMOS QVCO with varactor tuned buffer stage. Kluwer Analog Integrated Circuits and Signal Processing, C-42, 7–19.

    Article  Google Scholar 

  51. Kim, H. R., Cha, C. Y., Oh, S. M., Yang, M. S., & Lee, S. G. (2004). A very low power quadrature VCO with back-gate coupling. IEEE Journal of Solid State Circuits, C-39, 952–955.

    Article  Google Scholar 

  52. Rai, S., & Otis, B. (2007). A 1 V 600 μW 2.1 GHz quadrature VCO using BAW resonators. IEEE International Solid-State Circuits Conference, 2007.

  53. Kenneth, O. (1998). Estimation methods for quality factors of inductors fabricated in silicon integrated circuit process technologies. IEEE Journal of Solid State Circuits, C-33, 1249–1252.

    Google Scholar 

  54. Andreani, P. (2001). Very low phase noise RF quadrature oscillator architecture. Electronics letters, C-37, 902–903.

    Article  Google Scholar 

  55. Hegazi, E., Sjoland, H., & Abidi, A. A. (2001). A filtering technique to lower LC oscillator phase noise. IEEE Journal of Solid State Circuits, C-36, 1921–1930.

    Google Scholar 

  56. Boon, C. C., Do, M. A., Yeo, K. S., Ma, J. G., & Xang, X. L. (2004). RF CMOS low-phase-noise LC oscillator through memory reduction tail transistor. IEEE Trans. Circuits and Systems part-II, C-51, 85–90.

    Article  Google Scholar 

  57. Kwok, K., & Luong, H. C. (2005). Ultra-low-voltage high-performance VCO using transformer feedback. IEEE Journal of Solid-State Circuits, C-40, 652–660.

    Article  Google Scholar 

  58. Cabanillas, J., Pussopt, L., Lopez-Villegas, J. M., & Rebeiz, G. M. (2000). A 900 MHz low phase noise CMOS quadrature oscillator. In Proc. IEEE RFIC Symp., 2000, pp. 63–66.

  59. Razavi, B. (2004). A study of injection locking and pulling in oscillators. IEEE Journal of Solid-state circuits, C-39, 1415–1424.

    Article  Google Scholar 

  60. Chi, B., & Shi, B. (2002). Low-power CMOS VCO and its divide-by-2 dividers with quadrature outputs. IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, June 2002, pp. 525–528.

  61. Gierkink, S. L. J., Levantino, S., Frye, R. C., & Boccuzzi, V. (2002). A low-phase-noise 5 GHz quadrature CMOS VCO using common-mode inductive coupling. In Proc. Eur. Solid-State Circuits Conference, September 2002, pp. 539–542.

  62. Guermandi, D., Tortori, P., Franchi, E., & Gnudi, A. (2005). A 0.83–2.5 GHz continously tunable quadrature VCO. IEEE Journal of Solid State Circuits, C-40, 2620-2626.

    Article  Google Scholar 

  63. Guermandi, D., Tortori, P., Franchi, E., & Gnudi, A. (2005). A 0.75–2.2 GHz continously tunable quadrature VCO. IEEE International Solid-State Circuits Conference, 2005, pp. 536–537.

  64. Tortori, P., Guermandi, D., Franchi, E., & Gnudi, A. (2004). Quadrature VCO based on direct second harmonic locking. In Proc. ISCAS, Vancouver, BC Canada, June 2004.

  65. Choi, H. C., Shin, S. B., & Lee, S. G. (2004). A low-phase noise LC-QVCO in CMOS technology. IEEE Microwave and Wireless Components Letter, C-14, 540–542.

    Article  Google Scholar 

  66. Shin, S. B., Choi, H. C., & Lee, S. G. (2003). Source-injection parallel coupled LC-QVCO. Electronics Letters, C-39, 1059–1060.

    Article  Google Scholar 

  67. Kim, J. H., & Yoo, H. J. (2005). Multi-standard CMOS LC QVCO with reconfigurable LC tank and low power low phase noise quadrature generation method. In Proc. ITC-SCC2005, 2005, pp. 1547-1551.

  68. Devnath, V., Mohan, J., Nguyen, Q., & Koh, Y. (2005). Inductive-capacitive (LC) based quadrature voltage controlled oscillator with deterministic quadrature signal phase relationship. United States Patent, No. 6,970,048, November 2005.

  69. Kral, A. (1998). RF CMOS oscillators with switched tuning. In Proc. IEEE CICC, 1998, pp. 555–558.

  70. Oh, N. J., & Lee, S. G. (2005). Current reused LC VCOs. IEEE Microwave and Wireless Component Letters, C-15, 736–738.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen Casha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casha, O., Grech, I. & Micallef, J. Comparative study of gigahertz CMOS LC quadrature voltage-controlled oscillators with relevance to phase noise. Analog Integr Circ Sig Process 52, 1–14 (2007). https://doi.org/10.1007/s10470-007-9090-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-007-9090-4

Keywords

Navigation