Skip to main content
Log in

New low component count floating inductor simulators consisting of a single DDCC

  • MIXED SIGNAL LETTER
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

In this paper, five novel and minimum number count floating inductor simulators (FIs) are proposed. Three of the presented FIs depending on the passive component choice can provide parallel R–L, (–R)–(–L) and series R–L, (–R)–(–L) from the same configuration while other two provide one of parallel R–L or series R–L. Some of the introduced positive lossy inductor simulators employ a grounded capacitor; accordingly, they are convenient for integrated circuit (IC) implementation. So as to exhibit the performance of the proposed structures, computer simulations based on SPICE program are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Metin, B., & Cicekoglu, O. (2006). A novel floating lossy inductance realization topology with NICs using current conveyors. IEEE Transactions on Circuits and Systems II-Express Briefs, 53(6), 483–486.

    Article  Google Scholar 

  2. Yuce, E. (2006). Floating inductance, FDNR and capacitance simulation circuit employing only grounded passive elements. International Journal of Electronics, 93(10), 679–688.

    Article  Google Scholar 

  3. Yuce, E. (2006). On the realization of the floating simulators using only grounded passive components. Analog Integrated Circuits and Signal Processing, 49, 161–166.

    Article  Google Scholar 

  4. Senani, R. (1982). Novel lossless synthetic floating inductor employing a grounded capacitor. Electronics Letters, 18, 413–414.

    Article  Google Scholar 

  5. Senani, R. (1979). Novel active-RC circuit for floating inductance simulation. Electronics Letters IEE, 15(21), 679–680.

    Article  Google Scholar 

  6. Singh, V. (1979). A new active-RC circuit realization of floating inductance. Proceedings of the IEEE, 67(12), 1659–1660.

    Article  Google Scholar 

  7. Senani, R. (1984). Floating ideal FDNR using only two Current Conveyors. Electronics Letters, 20(5), 205–206.

    Article  Google Scholar 

  8. Senani, R. (1986). On the realization of floating active elements. IEEE Transactions on Circuits and Systems, 33(3), 323–324.

    Article  Google Scholar 

  9. Minaei, S., Yuce, E., & Cicekoglu, O. (2006). A versatile active circuit for realising floating inductance, capacitance, FDNR and admittance converter. Analog Integrated Circuits and Signal Processing, 47(2), 199–202.

    Article  Google Scholar 

  10. Ananda Mohan, P. V. (1998). Grounded capacitor based grounded and floating inductance simulation using current conveyors. Electronics letters, 34(11), 1037–1038.

    Article  Google Scholar 

  11. Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Limitations of the simulated inductors based on a single current conveyor. IEEE Transactions on Circuits and Systems-I: Regular Papers, 53(12), 2860–2867.

    Article  Google Scholar 

  12. Yuce, E., & Minaei, S. (2008). A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Transactions on Circuits and Systems I-Regular Papers, 55(1), 254–263.

    Google Scholar 

  13. Yuce, E. (2008). Grounded inductor simulators with improved low frequency performances. IEEE Transactions on Instrumentation and Measurement, 57(5), 1079–1084.

    Article  Google Scholar 

  14. Bhusan, M., & Newcomb, R. W. (1967). Grounding of capacitors in integrated circuits. Electronics Letters, 3, 148–149.

    Article  Google Scholar 

  15. Pal, K., & Singh, R. (1982). Inductorless current conveyor allpass filter using grounded capacitors. Electronics Letters, 18, 47.

    Article  Google Scholar 

  16. Senani, R., & Singh, V. K. (1995). KHN-equivalent biquad using current conveyors. Electronics Letters, 31, 626–628.

    Article  Google Scholar 

  17. Yuce, E., & Minaei, S. (2008). Universal current-mode filters and parasitic impedance effects on the filter performances. International Journal of Circuit Theory and Application, 36, 161–171.

    Article  Google Scholar 

  18. Bruton, L. T. (1997). RC active circuits: Theory and design. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  19. Chiu, W., Liu, S. I., Tsao, H. W., & Chen, J. J. (1996). CMOS differential difference current conveyors and their applications. IEEE Proceedings Circuits Devices and Systems, 143, 91–96.

    Article  MATH  Google Scholar 

  20. Elwan, H. O., & Soliman, A. M. (1997). Novel CMOS differential voltage current conveyor and its applications. IEEE Proceedings Circuits Devices and Systems, 144(3), 195–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Yuce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuce, E. New low component count floating inductor simulators consisting of a single DDCC. Analog Integr Circ Sig Process 58, 61–66 (2009). https://doi.org/10.1007/s10470-008-9218-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-008-9218-1

Keywords

Navigation