Skip to main content
Log in

Novel high-precision current-mode multiplier/divider

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a method to reduce the second order effects on the circuit performances caused by the small sized MOS transistors is proposed. A current mode square-root circuit, a squarer/divider circuit and a multiplier/divider circuit are designed using this method. Proposed circuits have been simulated with SPICE simulator using 0.35 μm CMOS technology parameters. The main advantages of the proposed circuit are reduced errors of the output current function, a smaller area on the chip, possibility of controlling the output current with the control voltage, operation at higher frequencies and more efficient power consumption. As a result, it can be considered as a useful building block for IC designer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hashiesh, M. A., Mahmoud, S. A., & Soliman, A. M. (2004). New current-mode and voltage-mode CMOS analog multipliers. In Electrical, electronic and computer engineering international conference, ICEEC’04 (pp. 435–438).

  2. De La Cruz-Blas, C. A., Lopez-Martin, A. J., & Carlosena, A. (2003). 1.5 V four-quadrant CMOS current multiplier/divider. Electronics Letters, 39(5), 434–436. doi:10.1049/el:20030298.

    Article  Google Scholar 

  3. Oliveira, V. J. S., & Oki, N. (2007). Low voltage four-quadrant current multiplier: An improved topology for n-well CMOS process. In Design & technology of integrated systems in nanoscale era, DTIS. International conference (pp. 52–55).

  4. Garg, R., Govil, J., & Goel, P. (2006). MOS translinear principle based analogue multiplier divider. In Mixed design of integrated circuits and system, MIXDES, 06 (pp. 332–336).

  5. Li, G., & Maundy, B. (2004). A novel four quadrant CMOS analog multiplier/divider. In IEEE international symposium on circuits and systems, ISCAS ’04 (Vol. 1, pp. 1108–1111).

  6. Premont, C., Cattet, S., Grisel, R., Abouchi, N., Chante, J., & Renault, D. (1998). A CMOS multiplier/divider based on current conveyors. In IEEE international symposium on circuits and systems, ISCAS’98 (Vol. 1, pp. 69–71).

  7. Kaewdang, K., Fongsamut, C., & Surakampontorn, W. (2003). A wide-band current-mode OTA-based analog multiplier-divider. In IEEE international symposium on circuits and systems ISCAS’03 (Vol. 1, pp. 349–352).

  8. Seevinck, E., & Wiegerink, R. J. (1991). Generalized translinear circuit principle. IEEE Journal of Solid-State Circuits, 26(8), 1098–1102. doi:10.1109/4.90062.

    Article  Google Scholar 

  9. Mulder, J., vander Woerd, A. C., Serdijn, W. A., & von Roermund, A. H. M. (1996). Current-mode companding \( \sqrt x \)-domain integrator. Electronics Letters, 32(3), 198–199. doi:10.1049/el:19960128.

    Article  Google Scholar 

  10. Mulder, J., vander Woerd, A. C., & Serdijn, W. A. (1998). A 3.3 V current-controlled \( \sqrt x \)-domain oscillator. Analog Integrated Circuits and Signal Processing, 16(1), 17–28. doi:10.1023/A:1008213800617.

    Article  Google Scholar 

  11. Eskiyerli, M., & Payne, A. J. (2000). Square-root domain filter design and performance. Analog Integrated Circuits and Signal Processing, 22(2), 231–243. doi:10.1023/A:1008334211982.

    Article  Google Scholar 

  12. Lopez-Martin, A. J., & Carlosena, A. (2000). Design of MOS-translinear multiplier/dividers in analog VLSI. VLSI Design Journal, 11(4), 321–329. doi:10.1155/2000/21852.

    Article  Google Scholar 

  13. Lopez-Martin, A. J., & Carlosena, A. (2001). A versatile 1.5 V current-mode CMOS analog multiplier/divider circuit. In European conference on circuit theory and design, ECCTD’01 (Vol. 2, pp. 89–92).

  14. Lopez-Martin, A. J., & Carlosena, A. (2001). Systematic design of companding systems by component substitution. Analog Integrated Circuits and Signal Processing, 28, 91–106. doi:10.1023/A:1011254005713.

    Article  Google Scholar 

  15. Menekay, S., Tarcan, R. C., & Kuntman, H. (2006). A novel higher precision current-mode square-root circuit. In IEEE 14th signal processing and communications applications (pp. 1–4).

  16. Menekay, S., Tarcan, R. C., & Kuntman, H. (2006). Filtering in square-root domain with a novel high-precision current-mode square-root circuit. In 3rd international symposium and exhibition on electric, electronic and computer engineering, ISEECE’06 (pp. 16–21).

  17. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits. New York: John Wiley & Sons, Inc.

    Google Scholar 

  18. Tsividis, Y. P. (1987). Operation and modeling of the MOS transistor. New York: McGraw-Hill.

    Google Scholar 

  19. Tarcan, R. C., & Kuntman, H. (2003). A new low distortion analog multiplier. AEU International Journal of Electronics and Communications, 57(6), 365–371. doi:10.1078/1434-8411-54100187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Menekay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menekay, S., Tarcan, R.C. & Kuntman, H. Novel high-precision current-mode multiplier/divider. Analog Integr Circ Sig Process 60, 237–248 (2009). https://doi.org/10.1007/s10470-009-9289-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9289-7

Keywords

Navigation