Skip to main content
Log in

First-order voltage-mode all-pass filter employing one active element and one grounded capacitor

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new circuit topology of first-order voltage-mode all-pass filter providing high-input and low-output impedances is described. The filter consists of only one grounded capacitor and one active element, namely VD-DIBA (Voltage Differencing-Differential Input Buffered Amplifier), with the possibility of electronically tuning the natural frequency. The filter is assembled from commercial integrated circuits, and the frequency responses measured are compared with the theoretical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ponsonby, J. E. B. (1966). Active all-pass filter using a differential operational amplifier. Electronics Letters, 2, 134–135.

    Article  Google Scholar 

  2. Genin, R. (1968). Realization of an all-pass transfer function using operational amplifiers. Proceedings of the IEEE, 56, 1746–1747.

    Article  Google Scholar 

  3. Aronhime, P., & Budak, A. (1969). An operational amplifier all-pass network. Proceedings of the IEEE, 57, 1677–1678.

    Article  Google Scholar 

  4. Bhattacharyya, B. B. (1969). Realization of an all-pass transfer function. Proceedings of the IEEE, 57, 2092–2093.

    Article  Google Scholar 

  5. Soliman, A. M. (1973). Realization of operational amplifier all-pass networks. Electronics Letters, 9, 67–68.

    Article  Google Scholar 

  6. Donald, T. C., David, J. C., & Jason, R. G. (1997). A high frequency integrable band-pass filter configuration. IEEE Transactions on Circuits and Systems-II, 44, 856–860.

    Google Scholar 

  7. Soliman, A. M. (1973). Inductorless realization of an all-pass transfer function using the current conveyor. IEEE Transactions on Circuit Theory, 20(1), 80–81.

    Article  Google Scholar 

  8. Soliman, A. M. (1973). Another realization of an all-pass or a notch filter using a current conveyor. International Journal of Electronics, 35, 135–136.

    Article  Google Scholar 

  9. Horng, J. W. (2005). Current conveyors based allpass filters and quadrature oscillators employing grounded capacitors and resistors. Computers & Electrical Engineering, 31, 81–92.

    Article  MATH  Google Scholar 

  10. Cam, U. (2005). A new transadmittance type first-order allpass filter employing single third generation current conveyor. Analog Integrated Circuits and Signal Processing, 43, 97–99.

    Article  Google Scholar 

  11. Maheshwari, S., & Khan, I. A. (2001). Novel first-order allpass sections using a single CCIII. International Journal of Electronics, 88, 773–778.

    Article  Google Scholar 

  12. Maheshwari, S., Khan, I. A., & Mohan, J. (2006). Grounded capacitor first-order filters including canonical forms. Journal of Circuits, Systems, and Computers, 15(2), 289–300.

    Article  Google Scholar 

  13. Ibrahim, M. A., Kuntman, H., & Cicekoglu, O. (2003). First-order all-pass filter canonical in the number of resistors and capacitors employing a single DDCC. Circuits Systems Signal Processing, 22(5), 525–536.

    Article  MATH  Google Scholar 

  14. Ibrahim, M. A., Kuntman, H., Ozcan, S., Suvak, O., & Cicekoglu, O. (2004). New first-order inverting-type second-generation current-conveyor-based all-pass sections including canonical forms. Electrical Engineering, 86, 299–301.

    Article  Google Scholar 

  15. Maheshwari, S. (2004). New voltage and current-mode APS using current controlled conveyor. International Journal of Electronics, 91, 735–743.

    Article  Google Scholar 

  16. Maheshwari, S. (2008). A canonical voltage-controlled VM-APS with a grounded capacitor. Circuits, Systems, and Signal Processing, 27, 123–132.

    Article  Google Scholar 

  17. Metin, B., Cicekoglu, O., & Pal, K. (2007). DDCC based all-pass filters using minimum number of passive elements. Proceedings of the MWSCAS, 2007, 518–521.

    Google Scholar 

  18. Liu, S., & Hwang, C. S. (1997). Realization of current-mode filters using single FTFN. International Journal of Electronics, 82, 499–502.

    Article  Google Scholar 

  19. Higashimura, M. (1991). Current-mode allpass filter using FTFN with grounded capacitor. Electronics Letters, 27, 1182–1183.

    Article  Google Scholar 

  20. Cam, U., Cicekoglu, O., Gulsoy, M., & Kuntman, H. (2000). New voltage and current mode first-order all-pass filters using single FTFN. Frequenz, 7(8), 177–179.

    Google Scholar 

  21. Tangsrirat, W. (2008). Electronically tunable multi-terminal floating nullor and its applications. Radioengineering, 17(4), 3–7.

    Google Scholar 

  22. Kilinc, S., & Cam, U. (2004). Current-mode first-order allpass filter employing single current operational amplifier. Analog Integrated Circuits and Signal Processing, 41, 47–53.

    Article  Google Scholar 

  23. Acosta, L., R-Angulo, J., L-Martín, A. J., & Carvajal, R. G. (2009). Low-voltage first-order fully differential CMOS all-pass filter with programmable pole-zero. Electronics Letters, 45(8), 385–386.

    Article  Google Scholar 

  24. Cam, U., Cakir, C., & Cicekoglu, O. (2004). Novel transimpedance type first-order all-pass filter using single OTRA. International Journal of Electronics and Communications (AEÜ), 58, 296–298.

    Article  Google Scholar 

  25. Toker, A., Ozoguz, S., Cicekoglu, O., & Acar, C. (2000). Current-mode allpass filters using current differencing buffered amplifier and a new high-Q bandpass filter configuration. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 47, 949–954.

    Article  Google Scholar 

  26. Metin, B., Cicekoglu, O., & Pal, K. (2008). Voltage mode all-pass filter with a single current differencing buffered amplifier. Proceedings of the MWSCAS, 2008, 734–737.

    Google Scholar 

  27. Maheshwari, S. (2007). Voltage-mode all-pass filters including minimum component count circuits. Active and Passive Electronic Components, 5 p (Article ID 79159).

  28. Lahiri, A. (2009). Comment on “Voltage-mode all-pass filters including minimum component count circuits. Active and Passive Electronic Components, 4 p (Article ID 595324).

  29. Keskin, A. Ü. (2006). Multi-function biquad using single CDBA. Electrical Engineering, 88, 353–356. doi:10.1007/s00202-004-0289-4.

    Article  Google Scholar 

  30. Uygur, A., & Kuntman, H. (2006). Low-voltage current differencing transconductance amplifier in a novel allpass configuration. In Proceedings of the 13th IEEE mediterranean electrotechnical conference (MELECON’06) (pp. 23–26).

  31. Keskin, A. Ü., & Biolek, D. (2006). Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proceedings: Circuits Devices and Systems, 153(3), 214–218.

    Article  Google Scholar 

  32. Shah, N. A., Quadri, M., & Iqbal, S. Z. (2008). CDTA based transimpedance type first-order all-pass filter. WSEAS Transactions on Electronics, 5(6), 280–284.

    Google Scholar 

  33. Tanjaroen, W., & Tangsrirat, W. (2008). Resistorless current-mode first-order allpass filter using CDTAs. In Proceedings of the International Conference on ECTI-CON, 2, 721–724.

  34. Tanaphatsiri, C., Jaikla, W., & Siripruchyanun, M. (2008). An electronically controllable voltage-mode first-order all-pass filter using only single CCCDTA. In Proceedings of the 2008 international symposium on communications and information technologies (ISCIT 2008) (pp. 305–309).

  35. Shah, N. A., Quadri, M., & Iqbal, S. Z. (2008). High output impedance current-mode allpass inverse filter using CDTA. Indian Journal of Pure & Applied Physics, 46, 893–896.

    Google Scholar 

  36. Keskin, A. Ü., Pal, K., & Hancioglu, E. (2008). Resistorless first-order all-pass filter with electronic tuning. International Journal of Electronics and Communications (AEÜ), 62, 304–306.

    Article  Google Scholar 

  37. Lahiri, A., & Chowdhury, A. (2009). A novel first-order current-mode all-pass filter using CDTA. Radioengineering, 18(3), 300–305.

    Google Scholar 

  38. Biolek, D., & Biolkova, V. (2009). Allpass filter employing one grounded capacitor and one active element. Electronics Letters, 45(16), 807–808.

    Article  Google Scholar 

  39. Biolek, D. (2003). CDTA-Building block for current-mode analog signal processing. In Proceedings of the ECCTD’03, III (pp. 397–400).

  40. Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering, 17(4), 15–34.

    Google Scholar 

  41. OPA860—Wide Bandwidth Operational Transconductance Amplifier (OTA) and Buffer. Texas Instruments, SBOS331C-June 2005-Revised August 2008, www.ti.com.

  42. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1995). Current-controlled bandpass filter based on translinear conveyor. Electronics Letters, 31(20), 1727–1728.

    Article  Google Scholar 

  43. AD8129/AD8130. (2005). Low cost 270 MHz differential receiver amplifiers. Analog Devices, Review C, www.analog.com.

  44. Bajer, J., & Biolek, D. (2009). Digitally controlled quadrature oscillator employing two ZC-CG-CDBAs. Proceedings of the International Conference on EDS-IMAPS, 2009, 298–303.

    Google Scholar 

Download references

Acknowledgments

Research described in the paper was supported by the Czech Grant Agency under grants Nos. 102/08/0581, 102/09/1628, and by the research programmes of BUT No. MSM0021630503 and UD Brno No. MO FVT0000403, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor Biolek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biolek, D., Biolkova, V. First-order voltage-mode all-pass filter employing one active element and one grounded capacitor. Analog Integr Circ Sig Process 65, 123–129 (2010). https://doi.org/10.1007/s10470-009-9435-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9435-2

Keywords

Navigation