Skip to main content

Advertisement

Log in

A sub-1 Volt 10-bit supply boosted SAR ADC design in standard CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new very low-power, low-voltage successive approximation analog to digital converter (SAR ADC) design based on supply boosting technique. The supply boosting technique (SBT) and supply boosted (SB) circuits including level shifter, comparator, and supporting electronics are described. Supply boosting provides wide input common mode range and sub-1 Volt operation for the circuits designed in standard CMOS processes that have only high-Vt MOSFETs. A 10-bit supply boosted SAR ADC was designed and fabricated in a standard 0.5 μm, 5 V, 2P3M, CMOS process in which threshold voltages of NMOS and PMOS devices are +0.8 and −0.9 V, respectively. Fabricated SB-SAR ADC achieves effective number of bits (ENOB) of 8.04, power consumption of 147 nW with sampling rate of 1.0 KS/s on 1 Volt supply. Measured figure of merit (FOM) was 280 fJ/conversion-step. Proposed supply boosting technique improves input common mode range of both SB comparator and SAR ADC, allows sub-1 Volt operation when threshold voltages are in the order of the supply voltage, and achieves low energy operation. Thus, SBT is suitable for mixed-signal circuit designed for energy limited applications and systems in where supply voltage is in the order of threshold voltages of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chang, L., Frank, D. J., Montoye, R. K., Koester, S. J., Ji, B. J., Coteus, P. W., et al. (2010). Practical strategies for power-efficient computing technologies. Proceedings of the IEEE, 98(2), 215–236.

    Article  Google Scholar 

  2. Abo, A., & Gray, P. (1999). A 1.5-V. 10-bit, 14-MS/s CMOS pipeline analog-to-digital converter. IEEE Journal of Solid-State Circuits, 34, 599–606.

    Article  Google Scholar 

  3. Duisters, T. A. F., & Dijkmans, E. C. (1998). A-90-dB THD rail-to-rail input opamp using a new local charge pump in CMOS. IEEE Journal of Solid-State Circuits, 33, 947–955.

    Article  Google Scholar 

  4. Pierre, R. S. (2000). Low-power BiCMOS op amp with integrated current mode charge pump. IEEE Journal of Solid State Circuits, 35(7), 1046–1050.

    Article  Google Scholar 

  5. Lotfi, R., Taherzadeh-Sani, M., Azizi, M. Y., & Shoaei, O. (2003). A 1-V MOSFET-only fully-differential dynamic comparator for use in low-voltage pipelined A/D converters. International Symposium on Signals, Circuits and Systems, (SCS), 2, 377–380.

    Google Scholar 

  6. Baschirotto, A., & Castello, R. (1997). A 1-V 1.8-MHz CMOS switched-opamp SC filter with rail-to-rail output swing. IEEE Journal of Solid-State Circuits, 32, 1979–1986.

    Article  Google Scholar 

  7. Berg, Y., Wisland, D. T., & Lande, T. S. (1999). Ultra low-voltage/low-power digital floating-gate circuits. IEEE Transactions on Circuits and Systems I, 46, 930–936.

    Google Scholar 

  8. Blalock, B. J., Allen, P. E., & Rincon-Mora, G. A. (1998). Designing 1-V opamps using standard digital CMOS technology. IEEE Transactions on Circuits and Systems Part II: Express Briefs, 45, 769–780.

    Article  Google Scholar 

  9. Hung, Y.-C., & Liu, B.-D. (2004). A low-voltage wide-input CMOS comparator for sensor application using back-gate technique. Biosensors and Bioelectronics, 20(1), 53–59.

    Article  Google Scholar 

  10. Chu, W.-S., & Current, K. W. (1997). A rail-to-rail input-range CMOS voltage comparator. IEEE Midwest Symposium Circuits and Systems, (MWSCAS), 1, 160–163.

    Google Scholar 

  11. Rivoir, R., Maloberti, F. (1997). A 1mV resolution, 10MS/s rail-to-rail comparator in 0.5-μm low-voltage CMOS digital process. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 461–464).

  12. Cho, T., & Gray, P. (1995). A 10 b, 20 Msample/s, 35 mW pipeline A/D converter. IEEE Journal of Solid-State Circuits, 30(3), 166–172.

    Article  Google Scholar 

  13. Song, W., Choi, H., Kwak, S., & Song, B. (1995). A 10-b 20-Msample/s low power CMOS ADC. IEEE Journal of Solid-State Circuits, 30(5), 514–521.

    Article  Google Scholar 

  14. Allen, P. E., & Holberg, D. R. (2002). CMOS analog circuit design (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  15. Senderowicz, D., Nicollini, G., Pernici, S., Nagari, A., Confalonieri, P., Dallavalle, C. (1997). Low-voltage double-sampled ΣΔ converters. In IEEE International Solid-State Circuits Conference (ISSCC) (pp. 210–211, 458).

  16. Scott, M. D., Boser, B. E., & Pister, K. S. J. (2003). An ultralow-energy ADC for smart dust. IEEE Journal of Solid-State Circuits, 38(7), 1123–1129.

    Article  Google Scholar 

  17. Hariprasath, V., Guerber, J., Lee, S.-H., & Moon, U.-K. (2010). Merged capacitor switching based SAR ADC with highest switching energy-efficiency. Electronics Letters, 46(9), 620–621.

    Article  Google Scholar 

  18. Liu, C.-C., Chang, S.-J., Huang, G.-Y., & Lin, Y.-Z. (2010). A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE Journal of Solid-State Circuits, 45(4), 731–740.

    Article  Google Scholar 

  19. Craninckx, J., Plas, G. van der (2007). A 65fJ/conversion-step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90nm digital CMOS. In IEEE International Solid-State Circuits Conference (ISSCC) (pp. 246–247).

  20. Hong, H.-C., & Lee, G.-M. (2007). A 65-fJ/conversion-step 0.9-V 200-kS/s rail-to-rail 8-bit successive approximation ADC. IEEE Journal of Solid-State Circuits, 42(10), 2161–2168.

    Article  Google Scholar 

  21. Verma, N., & Chandrakasan, A. P. (2007). An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE Journal of Solid-State Circuits, 42, 1196–1205.

    Article  Google Scholar 

  22. Agnes, A., Bonizzoni, E., Malcovati, P., Maloberti, F. (2008). A 9.4 ENOB, 1V, 3.8μW, 100kS/s SAR-ADC with time-domain comparator. In IEEE International Solid-State Circuits Conference (ISSCC) (pp. 246–247).

  23. Lee, S.-K., Park, S.-J., Suh, Y., Park, H.-J., Sim, J.-Y. (2009). A 1.3μW 0.6V 8.7-ENOB successive approximation ADC in a 0.18μm CMOS. In Symposium on VLSI Circuits (pp.242–243).

  24. Lee, S.-Y., Cheng, C.-J., Wang, C.-P., Lee, S.-C. (2009). A 1-V 8-bit 0.95μW successive approximation ADC for biosignal acquisition systems. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 649–652).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suat U. Ay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ay, S.U. A sub-1 Volt 10-bit supply boosted SAR ADC design in standard CMOS. Analog Integr Circ Sig Process 66, 213–221 (2011). https://doi.org/10.1007/s10470-010-9515-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9515-3

Keywords

Navigation