Skip to main content
Log in

Two digitally programmable gain amplifiers based on current conveyors

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Two digitally programmable gain amplifiers based on current conveyors (CCIIs) are presented. The first digitally programmable gain amplifier consists of a CCII, an operational transconductance amplifier (OTA), and current mirrors. The second one is composed of current conveyor analogue switches (CCASs). Both proposed digitally programmable gain amplifiers do not need switches but they maintain the linear gain at any digital signal levels similar to the digitally programmable gain amplifier using switches; hence the proposed amplifiers are easier to realize, use narrower chip area, and consume lower power. The first proposed amplifier is verified by constructing the circuit using the CCII in an AD844 IC, the OTA in a CA3080 IC, and some bipolar current mirrors. The second proposed amplifier is verified by simulating the circuit using the parameters extracted from the layout (including parasitic capacitance) in the 0.25 μm MOS technology, the level 49 MOS model obtained through MOSIS is used. The results show that the operations of two proposed amplifiers are in accordance with the theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hsu, C. C., & Wu, J. T. (2003). A highly linear 125-MHz CMOS switched-resistor programmable-gain amplifier. IEEE Journal of Solid State Circuits, 38(10), 1663–1670.

    Article  Google Scholar 

  2. Kim, T. W., & Kim, B. (2006). A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications. IEEE Journal of Solid State Circuits, 41(4), 945–953.

    Article  Google Scholar 

  3. Xiao, J., Mehr, I., & Silva-Martinez, J. (2007). A high dynamic range CMOS variable gain amplifier for mobile DTV tuner. IEEE Journal of Solid State Circuits, 42(2), 292–301.

    Article  Google Scholar 

  4. Woo, B. B. (1980). Digitally programmable gain amplifiers with arbitrary range of gain values. Proceedings of the IEEE, 68(7), 934–936.

    Article  MathSciNet  Google Scholar 

  5. Roy, S. C. D. (1984). Digitally programmable gain amplifiers. IEEE Transactions on Instrumentation and Measurement, 33(4), 329–332.

    Article  Google Scholar 

  6. Rathore, T. S. (1983). Digitally controlled amplifiers with fewer resistors and sensitivities. Electronic Letters, 19(6), 646–647.

    Article  Google Scholar 

  7. Rathore, T. S., & Jain, L. C. (1995). Economical and accurate digitally programmable dual-polarity gain amplifier. Active and Passive Electronic Components, 18, 203–210.

    Article  Google Scholar 

  8. Rijns, J. J. F. (1996). CMOS low distortion high frequency variable gain amplifier. IEEE J Solid State Circuits, 31(7), 1029–1034.

    Article  Google Scholar 

  9. Elwan, H. O., & Ismail, M. (2000). Digitally programmable decibel-linear CMOS VGA for low-power mixed-signal applications. IEEE Transactions on Circuits and Systems II, 47(5), 388–398.

    Article  Google Scholar 

  10. Sanz, M. T., Celma, S., & Calvo, B. (2007). Using MOS current dividers for linearization of programmable gain amplifiers. International Journal of Circuit Theory and Applications, 36(4), 397–408.

    Article  Google Scholar 

  11. Calvo, B., Celma, S., & Sanz, M. T. (2003). High frequency digitally programmable gain amplifier. Electronics Letters, 39, 1095–1096.

    Article  Google Scholar 

  12. Moore, S. (1991). Designing with Analogue Switches. New York: Marcel Dekker.

    Google Scholar 

  13. Premont, C., Abouchi, N., Grisel, R., & Chante, J. P. (1998). A current conveyor-based high-frequency analog switch. IEEE Transactions on Circuits and Systems I, 45, 298–300.

    Article  Google Scholar 

  14. Monpapassorn, A. (2002). An analogue switch using a current conveyor. International Journal of Electronics, 89, 651–656.

    Article  Google Scholar 

  15. Bruun, E. (1993). CMOS high speed, high precision current conveyor and current feedback amplifier structures. International Journal of Electronics, 74, 93–100.

    Article  Google Scholar 

  16. Wang, Z. (1990). 2-MOSFET transistor with extremely low distortion for output reaching supply voltage. Electronics Letters, 26, 951–952.

    Article  Google Scholar 

  17. Johns, D., & Martin, K. (1997). Analog integrated circuit design. New York: Wiley.

    Google Scholar 

  18. Intersil Corporation, CA3080 Data Sheet. http://www.intersil.com/data/fn/fn475.pdf.

  19. Analog Devices, AD844 Data Sheet. http://www.analog.com/static/imported-files/data_sheets/AD844.pdf.

  20. Prommee, P., Angkeaw, K., Somdunyakanok, M., & Dejhan, K. (2009). CMOS-based near zero-offset multiple inputs max–min circuits and its applications. Analog Integrated Circuits and Signal Processing, 61, 93–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krit Angkeaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angkeaw, K., Prommee, P. Two digitally programmable gain amplifiers based on current conveyors. Analog Integr Circ Sig Process 67, 253–260 (2011). https://doi.org/10.1007/s10470-010-9548-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9548-7

Keywords

Navigation