Skip to main content
Log in

Simple oscillators-based readout circuit for low-power biomedical implant system

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper reports a wireless sensor readout circuit for continuous physiological parameters monitoring including a potentiostat, a data generation unit and a frequency-shift-keying (FSK) modulator unit with the low drop-out (LDO) regulator for biomedical implant system. The potentiostat can generate an output potential of 0.7 V for the data generation unit. The data generation unit is designed based on a relaxation oscillator scheme and can be used to sense a current signal from any amperometric biomedical sensor and convert the signal to a square waveform in which the frequency of the square wave signal is proportional to the sensor current. FSK modulation scheme has been selected for wireless transmission. Designed with a very simple ring oscillator, this modulator integrates the modulation functionality into the oscillator itself by using the data signal to control the oscillation frequency. The prototype circuits have been fabricated in a 0.35 μm bulk complementary metal-oxide semiconductor (CMOS) process. Working with a regulated 1.8 V supply, the potentiostat consumes only 2 μA of current while the data generation unit can generate around 15.7 kHz output frequency with an input current of 1 μA. The FSK modulator consumes a total current of around 19 μA for a carrier frequency around 1 MHz. An off-chip demodulator is constructed to demodulate the data signal from the FSK modulator and the demodulated signal has less than 1.6 % variation of frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wilson, G. S., Zhang, Y., Reach, G., Moatti-Sirat, D., Poitout, V., Thevenot, D. R., et al. (1992). Progress toward the development of an implantable sensor for glucose. Clinical Chemistry, 38(9), 1613–1617.

    Google Scholar 

  2. Haider, M. R., Islam, S. K., Mostafa, S., Zhang, M., & Oh, T. (2010). Low-power low-voltage current readout circuit for inductively powered implant system. IEEE Transactions on Biomedical Circuits and Systems, 4(4), 205–213.

    Article  Google Scholar 

  3. Mohseni, P., Najafi, K., Eliades, S. J., & Wang, X. (2005). Wireless multichannel biopotential recording using an integrated FM telemetry circuit. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 263–271.

    Article  Google Scholar 

  4. Johannessen, E. A., Wang, L., Cui, L., Tong, B. T., Ahmadian, M., Astaras, A., et al. (2004). Implementation of multichannel sensors for remote biomedical measurements in a microsystem formats. IEEE Transactions on Biomedical Engineering, 51(3), 525–535.

    Article  Google Scholar 

  5. Harrison, R. R., Watkins, P. T., Kier, R. J., Lovejoy, R. O., Black, D. J., Greger, B., et al. (2007). A low- power integrated circuit for a wireless 100-electrode neural recording system. IEEE Journal of Solid State Circuits, 42(1), 123–133.

    Article  Google Scholar 

  6. Roham, M., Halpern, J. M., Martin, H. B., Chiel, H. J., & Mohseni, P. (2008). Wireless amperometric neurochemical monitoring using an integrated telemetry circuit. IEEE Transactions on Biomedical Engineering, 55(11), 2628–2634.

    Article  Google Scholar 

  7. Rahajandraibe, W., Zaid, L., de Beaupre, V. C., and Bas, G. (2007). 2.4-GHz frequency synthesizer with open loop FSK modulator for WPAN applications, IEEE Northeast Workshop on Circuits and Systems, 1453–1456.

  8. Choi, H., Shin, S., Ku, Y., Jeong, M., and Lee, K., (2003). A 4.9 mW 270 MHz CMOS frequency synthesizer/FSK modulator. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 443–446.

  9. Tekin, A., Yuce, M. R., Shabani, J., Liu, W. (2006). A low-power FSK modulator/demodulator for an MICS band transceiver. IEEE Radio and Wireless Symposium, pp. 159–162.

  10. Bohorquez, J. L., Chandrakasan, A. P., & Dawson, J. L. (2009). A 350 μW CMOS MSK Transmitter and 400 μW OOK super-regenerative receiver for medical implant communications. IEEE Journal of Solid-State Circuits, 44(4), 1248–1259.

    Article  Google Scholar 

  11. Wen, S. H., Wang, C. S., and Wang, C. K. (2008). A low power 20 GHz 1.5 Gb/s CMOS injection-pulling FSK modulator and frequency discriminator for 60 GHz Links. IEEE Custom Integrated Circuits Conference (CICC), pp. 483–486.

  12. Pandey, J., & Otis, B. P. (2011). A Sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication. IEEE Journal of Solid-State Circuits, 46(5), 1049–1058.

    Article  Google Scholar 

  13. Abidi, A. A. (2006). Phase noise and jitter in CMOS ring oscillators. IEEE Journal of Solid-State Circuits, 41(8), 1803–1816.

    Article  Google Scholar 

  14. Haykins, S. (2000). Communication systems (4th ed.). New York: Wiley.

    Google Scholar 

  15. IEEE Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, IEEE Std. C95.1, 1999 (ed).

  16. Vaillancourt, P., Djemouai, A., Harvey, J. F., and Sawan, M. (1997). EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. In: Proceedings of 19th International Conference IEEE/EMBS, Chicago, Oct 30–Nov 2, pp. 2499–2502.

  17. Milliken, R. J., Silva-Martínez, J., & Sánchez-Sinencio, E. (2007). Full on-chip CMOS low-dropout voltage regulator. IEEE Transactions on Circuits and Systems, 5(9), 1879–1890.

    Google Scholar 

  18. Gupta, V., and Rincón-Mora, G. A. (2007). A 5 mA 0.6 μm CMOS Miller compensated LDO regulator with—27 dB worst-case power-supply rejection using 60 pF of on-chip capacitance. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, pp. 520–521.

  19. Stanacevic, M., Murari, K., Rege, A., Cauwenberghs, G., & Thakor, N. V. (2007). VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Transactions on Biomedical Circuits and Systems, 1(1), 63–72.

    Article  Google Scholar 

  20. Zhang, M., Haider, M. R., Huque, M. A., Adeeb, M. A., Rahman, S., & Islam, S. K. (2007). A low power sensor signal processing circuit for implantable biosensor applications. Smart Materials and Structures, 16(2), 525–530.

    Article  Google Scholar 

  21. Ahmadi, M. M., & Jullien, G. A. (2009). Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Transactions on Circuits and Systems, 56(7), 1339–1348.

    Article  MathSciNet  Google Scholar 

  22. Minch, B. A. (2002). A low-voltage MOS cascade bias circuit for all current levels. IEEE International Symposium on Circuits and Systems, 3, 619–622.

    Google Scholar 

  23. Enz, C. C., Krummenacher, F., & Vittoz, E. A. (1995). An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integrated Circuits and Signal Processing, 8(1), 83–114.

    Article  Google Scholar 

  24. Baker, R. J. (2010). CMOS circuit design, layout, and simulation (3rd ed.). New Jersey: IEEE Press.

    Book  Google Scholar 

  25. Zhu, K., Haider, M.R., Yuan, S., Islam, S.K. (2010). A sub-1 μA low-power FSK modulator for biomedical sensor circuits. IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 265–268.

  26. Benton, D., & Owens, D. S. (1993). Blood glucose and human memory. Journal of Psychopharmacology, 113, 83–88.

    Article  Google Scholar 

  27. Kennedy, E. J. (1995). Operational amplifier circuits: theory and applications. New York: Oxford University Press.

    Google Scholar 

  28. Ahmadi, M., & Jullien, G. (2009). A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Transactions on Biomedical Circuits and Systems, 3(3), 169–180.

    Article  Google Scholar 

  29. Liao, Y. T., Yao, H., Pariz, B., & Otis, B. (2012). A 3-uW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE Journal of Solid-State Circuits, 47(1), 335–344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, K., Islam, S.K., Haider, M.R. et al. Simple oscillators-based readout circuit for low-power biomedical implant system. Analog Integr Circ Sig Process 72, 383–393 (2012). https://doi.org/10.1007/s10470-012-9882-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9882-z

Keywords

Navigation