Skip to main content
Log in

Design of a novel differential quadrature crystal oscillator

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A novel crystal oscillator circuit with differential quadrature outputs is presented in this paper. It couples two differential Pierce structures with an annular cascade structure to realize differential quadrature outputs directly. A prototype of the circuit was fabricated in SMIC 0.18 μm CMOS process technology. The measurement results show that the maximum quadrature phase mismatch of adjoining signals is lower than 1.3° and the maximum amplitude mismatch is less than 1 %. Compared to the conventional quadrature signal implementations such as poly phase filter network, or a current mode logic divider, our proposed circuit can directly achieve differential quadrature outputs with much better phase noise and excellent differential quadrature matching. It proves potential application prospect in many radio frequency transceiver systems which require rigorous matching characteristics of differential quadrature local oscillator for excellent performance of image rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mirabbasi, S., & Martin, K. (2000). Classical and modern receiver architectures. IEEE Communications Magazine, 38(11), 132–139.

    Article  Google Scholar 

  2. Abidi, A. A. (1995). Direct-conversion radio transceivers for digital communications. IEEE Journal of Solid-State Circuits, 30, 1399–1410.

    Article  Google Scholar 

  3. Sung, K. Y., & Chao, C. C. (2009). Estimation and compensation of I/Q importance in OFDM direct-conversion receivers. IEEE Journal of Selected Topics in Signal Processing, 3(3), 438–453.

    Article  Google Scholar 

  4. Valkama, M., Springer, A., & Hueber, G. (2010). Digital signal processing for reducing the effects of RF imperfections in radio devices an overview. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 813–816).

  5. Chuang, C.-N., & Liu, S.-I. (2009). A 20-MHz to 3-GHz wide-range multiphase delay-locked loop. IEEE Transactions on Circuits and Systems II, Express Briefs, 56(11), 850–854.

    Article  Google Scholar 

  6. Chi, B., & Shi, B. (2002). Integrated low-power CMOS VCO and its divide-by-2 dividers. Chinese Journal of Semiconductors, 23(12), 1262.

    Google Scholar 

  7. Liao, F.-R., & Lu, S.-S. (2010). A programmable edge-combining DLL with a current-splitting charge pump for spur suppression. IEEE Transactions on Circuits and Systems II, Express Briefs, 57(12), 946–950.

    Article  Google Scholar 

  8. Zhou, Y., & Pan, Z. (2011). Impact of LPF mismatch on I/Q imbalance in direct conversion receivers. IEEE Transactions on Wireless Communications, 10(6), 1702–17087.

    Article  Google Scholar 

  9. Sanden, W. M. C. (2006). Analog design essentials. Germany: Springer.

    Google Scholar 

  10. Rofougaran, A., Rael, J., Rofougaran, M., & Abidi, A. (1996). A 900 MHz CMOS LC-oscillator with quadrature outputs. In Proc. ISSCC 1996 (pp. 392–393).

  11. Razavi, B. (1996). A study of phase noise in CMOS oscillators. IEEE Journal of Solid-State Circuits, 31(3), 331–343.

    Article  Google Scholar 

  12. Razavi, B. (2002). Design of analog CMOS integrated circuits (pp. 404–405). New York: McGraw-Hill.

    Google Scholar 

  13. Zhou, W., Ma, J., Jiang, L., Bai, L., & Xuan, Z. (2005). The technique development of OCXO in China. In Frequency Control Symposium and Exposition, 2005. Proceedings of the 2005 IEEE International.

  14. Vanshtein, L. A., & Vakman, D. E. (1983). Frequency dividing method in oscillation and waves theory. Moscow: Nayka.

    Google Scholar 

  15. Bogomolov, D. V. (2006). Two crystals and frequency pulling in precision 100 MHz OCXO. In International Frequency Control Symposium and Exposition, 2006 IEEE (pp. 221–223).

  16. Leeson, D. B. (1966). A simple model of feedback oscillator noises spectrum. Proceedings of the IEEE, 54(2), 329–330.

    Article  Google Scholar 

  17. Karthaus, U. (2006). A differential two-pin crystal oscillator-concept analysis and implementation. IEEE Transactions on Circuits and Systems-II: Express Briefs, 53(10), 1073–1077.

    Article  Google Scholar 

  18. Han, S., & Chi, B. (2005). A high phase accuracy and low amplitude mismatch quadrature LO driver. Chinese Journal of Semiconductors, 26(7), 1295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, M., Wang, Z. & Xu, J. Design of a novel differential quadrature crystal oscillator. Analog Integr Circ Sig Process 78, 827–833 (2014). https://doi.org/10.1007/s10470-013-0243-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0243-3

Keywords

Navigation