Skip to main content
Log in

Coding efficiency and bandwidth enhancement in polar delta sigma modulator transmitter

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces an architecture to enhance coding efficiency (CE) and bandwidth of the delta sigma modulator transmitters. In this architecture a low pass envelope delta sigma modulator (LPEDSM) is used instead of traditional cartesian low pass delta sigma modulator (LPDSM) to reduce the quantization noise and to improve the CE. Simulation results show that for an Uplink long term evolution (LTE) signal with 1.4 MHz bandwidth, 7.8-dB peak to average power ratio (PAPR), and an oversampling ratio (OSR) of 32, the CE for the polar LPEDSM transmitter is equal to 42 % in compare to 9.7 % CE for cartesian LPDSM transmitter. In the next step, a quantization noise reduction loop with in-band quantization noise filtering are implemented in this architecture. By using this combined technique for an Uplink LTE signal with 1.4 MHz bandwidth, with the same PAPR and OSR of 32, the CE is improved from 42 to 59.33 % with 40 dB signal to noise and distortion ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cripps, S. C. (2006). RF power amplifiers for wireless communications (2nd ed.). Norwood: Artech House.

    Google Scholar 

  2. Raab, F. (2004). Split-band modulator for kahn-technique transmitters, IEEE MTT-S International. Microwave Symposium Digest, 2, 887–890.

    Google Scholar 

  3. You, F., He, S., Tang, X., & Bao, J. (2010). Analysis of envelope tracking linear class E power amplifier. Journal of Analog Integrated Circuits and Signal processing, 64, 129–136.

    Article  Google Scholar 

  4. Doherty, W. (1936). A new high efficiency power amplifier for modulated waves. Proceedings of the IRE, 24(9), 1163–1182.

    Article  Google Scholar 

  5. Golestaneh, H., Abdipour, A., & Mohammadi, A. (2012). Nonlinear modeling and analysis of Doherty power amplifier driven by non-constant envelop signals. Journal of Analog Integrated Circuits and Signal processing, 72, 141–153.

    Article  Google Scholar 

  6. Chireix, H. (1935). High power outphasing modulation. Proceedings of the IRE, 23(11), 1370–1392.

    Article  Google Scholar 

  7. Grebennikov, A. (2011). RF and microwave transmitters design (1st ed.). New York: Wiley.

    Book  Google Scholar 

  8. Ebrahimi, M.M., Helaoui, M., Ghannouchi, F.M. (2009) “Efficiency enhancement of a WiMAX switching mode GaN power amplifier through layout optimization of distributed harmonic matching network. Proceedings of the IEEE European Microwave Conference (pp. 1732–1735).

  9. Eron, M., Kim, B., Raab, F., Caverly, R., & Staudinger, J. (2011). The head of the class. IEEE Microwave Magazine, 12(7), S17–S33.

    Article  Google Scholar 

  10. Helaoui, M., Hatami, S., Negra, R., & Ghannouchi, F. M. (2008). A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design. IEEE Transactions on Circuits and Systems II, 55(11), 1129–1133.

    Article  Google Scholar 

  11. Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2011). Time-interleaved delta sigma modulator for wideband digital GHz transmittes design and SDR applications. Journal of Progress in Electromagnetics Research B, 34, 263–281.

    Article  Google Scholar 

  12. Moallemi, S., Jannesari, A. (2012)“The design of reconfigurable delta-sigma modulator for software defined radio applications. Proceedings of the IEEE International Conference on Circuits, and Systems (pp. 254–257)

  13. Keyzer, J. S., Hinrichs, J. M., Metzger, A. G., Iwamoto, M., Galton, I., & Asbeck, P. M. (2001). Digital generation of RF signals for wireless communications with bandpass delta sigma modulation. IEEE International Microwave Symposium Digest, 3, 2127–2130.

    Google Scholar 

  14. Hung, T. P., Rode, J., Larson, L. E., & Asbeck, P. M. (2007). Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters. IEEE Transactions on Microwave Theory and Techniques, 55(12), 2845–2855.

    Article  Google Scholar 

  15. Johnson, T., & Stapleton, S. P. (2006). RF class-d amplification with bandpass sigma-delta modulator drive signals. IEEE Transactions on Circuits and Systems I, 53(12), 2507–2520.

    Article  Google Scholar 

  16. Ebrahimi, M. M., & Helaoui, M. (2013). Reducing quantization noise to boost efficiency and signal bandwidth in delta-sigma-based transmitters. IEEE Transactions on Microwave Theory and Techniques, 61(12), 4245–4250.

    Article  Google Scholar 

  17. Ghannouchi, F. M., Hatami, S., Aflaki, P., Helaoui, M., & Negra, R. (2010). Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 58(11), 2812–2819.

    Article  Google Scholar 

  18. Choi, J., Yim, J., Yang, J., Kim, J., Cha, J., Kang, D., et al. (2007). A ΔΣ digitized polar RF transmitter. IEEE Transactions on Microwave Theory and Techniques, 55(12), 2679–2690.

    Article  Google Scholar 

  19. Dupuy, A., & Wang, Y. (2004). Envelope delta-sigma modulated (EDSM) microwave power amplifier. Microwave and Optical Technology Letters, 43(6), 491–495.

    Article  Google Scholar 

  20. Shameli, A., Safarian, A., Rofougaran, A., Rofougaran, M., & DeFlaviis, F. (2008). A two-point modulation technique for CMOS power amplifier in polar transmitte architecture. IEEE Transactions on Microwave Theory and Techniques, 56(1), 31–38.

    Article  Google Scholar 

  21. Nielsen, M., & Larsen, T. (2007). A transmitter architecture based on ΔΣ modulation and switch-mode power amplification. IEEE Transactions on Circuits and Systems II, 54(8), 735–739.

    Article  Google Scholar 

  22. Moon, J., Son, J., Lee, J., & Kim, B. (2011). A multimode/multiband envelope tracking transmitter with broadband saturated amplifier. IEEE Transactions on Microwave Theory and Techniques, 59(12), 3463–3473.

    Article  Google Scholar 

  23. Schreier, R., & Temes, G. C. (2004). Understanding delta-sigma data converter (1st ed.). New york: Wiley.

    Book  Google Scholar 

  24. Grebennikov, A., & Sokal, N. O. (2007). Switchmode RF power amplifiers. Burlington: Newnes.

    Google Scholar 

  25. Marques, A., Bastos, J., Van der Bosh, A., Vandenbussche, J., Steyaert, M., Sansen, W.(1998). A 12b Accuracy 300 Msample/Supdate Rate CMOS DAC. IEEE International Solid State Circuit Conference (pp. 216–217).

  26. Mladenov, V., Hegt, H., & Roermund, A. V. (2003). On the stability analysis of high order sigma-delta modulators. Journal of Analog Integrated Circuits and Signal Processing, 36, 47–55.

    Article  Google Scholar 

  27. Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2013). Delta-sigma-based transmitters: Advantages and disadvantage. IEEE Microwave Magazine, 14(1), 68–78.

    Article  Google Scholar 

  28. CGH40010. http://www.cree.com/products/pdf/CGH40010.pdf.

  29. Grebennikov, A., (2009) High-efficiency transmission-line Gan HEMT inverse class F power amplifier for active antenna arrays. Asia Pacific Microwave Conference (pp. 317–320)

  30. Grebennikov, A. (2011) A high-efficiency 100-W four-stage Doherty GaN HEMT power amplifier module for WCDMA systems. IEEE MTT-S International Microwave Symposium Digest (pp 1–4)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Ghafoorifard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erfanimajd, N., Ghafoorifard, H. & Mohammadi, A. Coding efficiency and bandwidth enhancement in polar delta sigma modulator transmitter. Analog Integr Circ Sig Process 82, 411–421 (2015). https://doi.org/10.1007/s10470-015-0487-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0487-1

Keywords

Navigation