Skip to main content
Log in

A differential coupled frequency doubling voltage-controlled crystal oscillator in a 0.35 μm CMOS process

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a high-performance differential coupled frequency doubling voltage-controlled crystal oscillator (VCXO). Frequency doubling and low phase noise are realized through a novel gm-boosted differential Colpitts oscillator. Distributed varactor arrays are used to obtain wide frequency tuning range and high tuning linearity simultaneously. The proposed VCXO is fabricated in a 0.35 μm 2P3M standard complementary metal-oxide semiconductor process at a supply voltage of 3.3 V, and the power dissipation is 7 mW. Measurement results show that the designed VCXO achieves ±135 ppm output frequency variation range with 5 % linearity and −133 dBc/Hz phase noise at 1 kHz frequency offset by using a 40 MHz fundamental AT-cut crystal resonator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rohde, U. L., & Klage, G. (2000). Recent advances in linear VCO calculations, VCO design and spurious analyses of fractional-N synthesizers (pp. 57–78)., Microwave & RF magazine New York: McGraw Hill.

    Google Scholar 

  2. Rohde, Ulrich L., Poddar, Ajay K., & Böck, Georg. (2005). The design of modern microwave oscillators for wireless applications: theory and optimization. Hoboken: Wiley.

    Book  Google Scholar 

  3. Balan, V., & Pan T. (2002). A crystal oscillator with automatic amplitude control and digitally controlled pulling range of ±100 ppm. In IEEE International Symposium on Circuits and Systems 2002, ISCAS 2002 (Vol. 5). IEEE.

  4. Takahashi, Y., et al. (2014). A low noise, wide variable range and high linearity VCXO-IC using linearity designable on-chip varactor arrays for fundamental AT-cut crystal resonators. In IEEE International on Frequency Control Symposium (FCS) 2014. IEEE.

  5. Makoto, W., Umeki, M., & Okazaki, M. (2006). High performance VCXO with 622.08 MHz fundamental quartz crystal resonator. In International Frequency Control Symposium and Exposition, 2006 IEEE. IEEE.

  6. Rohde, U. L., & Poddar, A. K. (2009). A novel voltage controlled crystal oscillator (VCXO). In IEEE International on Frequency Control Symposium, 2009 Joint with the 22nd European Frequency and Time forum. IEEE.

  7. Hong, J.-P., & Lee, S.-G. (2009). Low phase noise G-boosted differential gate-to-source feedback Colpitts CMOS VCO. IEEE Journal of Solid-State Circuits, 44(11), 3079–3091.

    Article  Google Scholar 

  8. Razavi, B. (2002). Design of analog CMOS integrated circuits. New York: Tata McGraw-Hill Education.

    Google Scholar 

  9. Saberi Ghouchani, S., & Paramesh J. (2010). A wideband millimeter-wave frequency doubler-tripler in 0.13-µm CMOS. In Radio Frequency Integrated Circuits Symposium (RFIC), 2010 IEEE. IEEE.

  10. Wu, Y., et al. (2010). Design of a 4–12 GHz frequency doubler MMIC based on InGaP/GaAs HBT process. In International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2010. IEEE.

  11. Barker, R. W. J. (1975). BJT frequency doubling with sinusoidal output. Electronics Letters, 11(5), 106–107.

    Article  MathSciNet  Google Scholar 

  12. Andreani, P., & Mattisson, S. (2000). On the use of MOS varactors in RF VCOs. IEEE Journal of Solid-State Circuits, 35(6), 905–910.

    Article  Google Scholar 

  13. Jin, J., Yu, X., Liu, X., Lim, W. M., & Zhou, J. (2014). A wideband voltage-controlled oscillator with gain linearized varactor bank. IEEE Transactions on Components, Packaging and Manufacturing Technology, 4(5), 905–910.

    Article  Google Scholar 

  14. Li, X., Shekhar, S., & Allstot, D. J. (2005). G m-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 40(12), 2609–2619.

    Article  Google Scholar 

  15. Rohde, U. L., & Poddar A. K. (2009). Noise minimization techniques for voltage controlled crystal oscillator (VCXO) circuits. In Radio and Wireless Symposium 2009, RWS’09 IEEE. IEEE.

  16. Griffith, D., et al. (2010) A 65 nm CMOS DCXO system for generating 38.4 MHz and a real time clock from a single crystal in 0.09 mm2. In Radio Frequency Integrated Circuits Symposium (RFIC), 2010 IEEE. IEEE.

  17. Lin, J.-C. (2005). A low-phase-noise 0.004 ppm/step DCXO with guaranteed monotonicity in 90 nm CMOS. In IEEE International Digest of Technical Papers on Solid-State Circuits Conference 2005, ISSCC 2005.

  18. Farahvash, S., Quek, C., & Mak M. (2008). A temperature-compensated digitally-controlled crystal Pierce oscillator for wireless applications. In Digest of Technical Papers. IEEE International on Solid-State Circuits Conference 2008, ISSCC 2008. IEEE.

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) and the National Natural Science Foundation of China (Grant Nos. 61350007 and 61234003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zeng, Y. & Chen, J. A differential coupled frequency doubling voltage-controlled crystal oscillator in a 0.35 μm CMOS process. Analog Integr Circ Sig Process 83, 195–202 (2015). https://doi.org/10.1007/s10470-015-0529-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0529-8

Keywords

Navigation