Skip to main content
Log in

A low-power 2nd-order CT delta–sigma modulator with an asynchronous SAR quantizer

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a low voltage continuous-time delta–sigma modulator (DSM) intended for the receiver of an ultra-low-power radio. The DSM features a 2nd-order loop filter implemented with a single operational amplifier to reduce the power consumption. Furthermore, a 4-bit quantizer is used to achieve high resolution while keeping the sampling frequency low. The quantizer is realized using the successive approximation register architecture with asynchronous control which is more power efficient than the commonly used flash architecture. The DSM has been implemented in a 65 nm CMOS process. Simulation results show a peak SNDR of 65 dB over a 500 kHz signal bandwidth. The DSM consumes 69  \({\upmu }\)W from a 800 mV power supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Schreier, R., & Temes, G. (2004). Understanding delta sigma data converters. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  2. Radjen, D., Anderson, M., Sundström, L., & Andreani, P. (2014). A low-power 2nd-order CT delta–sigma modulator with a single operational amplifier. Analog Integrated Circuits and Signal Processing, 80(3), 387–397.

    Article  Google Scholar 

  3. Zanbaghi, R., Hanumolu, P. K., & Fiez, T. S. (2013). An 80-dB DR, 7.2-MHz bandwidth single opamp biquad based CT delta–sigma modulator dissipating 13.7-mW. IEEE Jounal of Solid-State Circuits, 48(2), 487–501.

    Article  Google Scholar 

  4. Liu, L., Li, D., Ye, Y., & Wang, Z. (2011). A 92.4dB SNDR 24kHz delta--sigma modulator consuming 352 \(\mu\)W. In Proceedings of International Symposium on Low Power Electronics and Design, ISPLED’11 (pp. 351–356). Fukuoka, Japan, 1–3 August 2011.

  5. Lee, C. C., & Flynn, M. P. (2011). A SAR-assisted two-stage pipeline ADC. IEEE Journnal of Solid-State Circuits, 46(4), 859–869.

    Article  Google Scholar 

  6. Ranjbar, M., Mehrabi, A., Oliaei, O., & Carrez, F. (2010). A 3.1 mW continuous-time delta–sigma modulator with 6-bit successive approximation quantizer for WCDMA. IEEE Journal of Solid-State Circuits, 45(8), 1479–1491.

    Article  Google Scholar 

  7. Tsai, H.-C., Lo, C.-L., Ho, C.-Y., & Lin, Y.-H. (2013). A 64-fJ/conv.-step continuous-time delta–sigma modulator in 40-nm CMOS using asynchronous SAR quantizer and digital delta–sigma truncator. IEEE Journal of Solid-State Circuits, 48(11), 1–12.

    Article  Google Scholar 

  8. Cherry, J. A., & Snelgrove, W. M. (1999). Excess loop delay in continuous-time delta–sigma modulators. IEEE Transactions on Circuits and Systems II, 46, 376–389.

    Article  Google Scholar 

  9. Benabes, P., Keramat, M., & Kielbasa, R. (1997). A methodology for designing continuous-time sigma-delta modulators. In European Design and Test Conference, EDTC (pp. 46–50), 17–20 March 1997.

  10. Liu, C., Chang, S., Huang, G., & Lin, Y. (2010). A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE Journal of Solid-State Circuits, 45(4), 731–740.

    Article  Google Scholar 

  11. Schreier, R. (2000). The delta-sigma toolbox for MATLAB. www.mathworks.com/matlabcentral/fileexchange/.

  12. Ranjbar, M., & Oliaei, O. (2011). A multibit dual-feedback CT delta–sigma modulator with lowpass signal transfer function. IEEE Transactions on Circuits and Systems I, 58(9), 2083–2095.

    Article  MathSciNet  Google Scholar 

  13. Ortmanns, M., & Gerfers, F. (2006). Continuous-time sigma–delta A/D conversion, fundamentals, performance limits and robust implementations. Berlin, Heidelberg: Springer.

    Google Scholar 

  14. Shoaei, O. (1996). Continuous-time delta-sigma A/D converters for high speed applications. Ph.D. Dissertation, Carleton University, Ottawa.

  15. Pavan, S., Krishnapura, N., Pandarinathan, R., & Sankar, P. (2008). A power optimized continuous-time delta–sigma ADC for audio applications. IEEE Journal of Solid-State Circuits, 43(2), 351–360.

    Article  Google Scholar 

  16. Matsukawa, K., Mitani, Y., Takayama, M., Obata, K., Dosho, S., & Matsuzawa, A. (2010). A fifth-order continuous-time delta–sigma modulator with single-opamp resonator. IEEE Journal of Solid-State Circuits, 45(4), 697–706.

    Article  Google Scholar 

  17. Matsukawa, K., Obata, K., Mitani, Y., & Dosho, S. (2012). A 10 MHz 50 fJ/conv. continuous time delta--sigma modulator with high-order single opamp integrator using optimization-based design method. In Proceedings of the 2012 Symposium on VLSI Circuits (pp. 160–161). Honolulu, Hawaii, 13–15 Jun 2012.

  18. Kauffman, J. G., Witte, P., Lehman, M., Becker, J., Manoli, Y., & Ortmanns, M. (2014). A 72 dB DR, CT delta–sigma modulator using digitally estimated, auxiliary DAC linearization achieving 88 fJ/conv-step in a 25 MHz BW. IEEE Journal of Solid-State Circuits, 49(2), 392–404.

    Article  Google Scholar 

  19. Abdulaziz, M., Törmänen, M., & Sjöland, H. (2014). A compensation technique for two-stage differential OTAs. IEEE Transactions on Circuits and Systems II, 61(8), 594–598.

    Article  Google Scholar 

  20. Chen, Y., Tsukanmoto, S., & Kuroda, T. (2009). A 9b 100MS/s 1.46mW SAR ADC in 65nm CMOS. In Proceedings of IEEE A-SSCC (pp. 145–148). Taipei, Taiwan, 16–18 Nov 2009.

  21. van Elzakker, M., van Tuijl, E., Geraedts, P., & Schinkel, D. (2010). A 10-bit charge-redistribution ADC consuming 1.9 \(\mu\)W at 1 MS/s. IEEE Journal of Solid-State Circuits, 45(5), 1007–1015.

    Article  Google Scholar 

  22. Harpe, P. J. A., Zhou, C., Bi, Y., van der Meijs, N. P., Wang, X., Philips, K., et al. (2011). A 26 \(\mu\)W 8 bit 10MS/s asynchronous SAR ADC for low energy radios. IEEE Journal of Solid-State Circuits, 46(7), 1585–1595.

    Article  Google Scholar 

  23. Chen, S. M., & Brodersen, R. W. (2006). A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13\(\mu\)m CMOS. IEEE Journal of Solid-State Circuits, 41(12), 1669–2680.

    Article  Google Scholar 

  24. Pavan, S., & Sankar, S. (2003). Power reduction in continuous-time delta--sigma modulators using the assisted opamp tecnique. In Proceedings of 29th IEEE ESSCIRC (pp. 198–201). Estoril, Portugal, 16–18 Sep 2003.

  25. Weng, C., Lin, C., Chang, Y., & Lin, T. (2011). A 0.89-mW 1-MHz 62-dB SNDR continuous-time delta–sigma modulator with an asynchronous sequential quantizer and digital excess-loop-delay compensation. IEEE Transactions on Circuits and Systems I, 58(12), 867–871.

    Article  Google Scholar 

  26. Luo, H., Cheung, R. C. C., Xiaopeng, L., & Tianlin, C. (2008). Design and measurement of a CT delta–sigma modulator with switched-capacitor switched-resistor feedback. IEEE Journal of Solid-State Circuits, 44(2), 473–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Radjen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radjen, D., Anderson, M., Sundström, L. et al. A low-power 2nd-order CT delta–sigma modulator with an asynchronous SAR quantizer. Analog Integr Circ Sig Process 84, 409–420 (2015). https://doi.org/10.1007/s10470-015-0590-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0590-3

Keywords

Navigation