Skip to main content
Log in

Design and analysis of an ultra-low-power double-tail latched comparator for biomedical applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new ultra-low power double-tail latched comparator suited for biomedical applications. The proposed comparator benefits from a positive feedback to achieve high resolution with low kickback noise. It is shown by time analysis and simulation that the delay time is significantly reduced compared to a conventional double-tail latched comparator. The presented circuit is designed and simulated in 0.18-μm CMOS technology. The post-layout simulation results show that the designed comparator consumes only 1.56 nW power, at 600 mV supply voltage and 100 kHz clock frequency. This amount is 54.35 % of power consumption of a conventional double-tail latched comparator with the same input referred offset of 7.5 mV. Furthermore, the proposed circuit provides a self-neutralization technique which results 8.8 % reduction of kick-back noise in comparison to the conventional latched comparator. The maximum clock frequency of this circuit is 200 MHz at 1 V supply voltage. The proposed circuit has a power-delay product of 0.0172 fJ at 100 kHz clock frequency. The proposed comparator is well designed to operate with supply voltages between 400 mV and 1 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Allen, P. E., & Holberg, D. R. (2002). CMOS analog circuit design (2nd ed.). Oxford: Oxford University.

    Google Scholar 

  2. Schinkel, D., Mensink, E., Klumperink, E., van Tuijl, E., & Nauta, B. (2007). A double-tail latch-type voltage sense amplifier with 18ps setup+hold time. In: ISSCC2007.

  3. Solis, C., & Ducoudray, G. (2010). High resolution low power 0.6m CMOS 40MHz dynamic latch comparator . In: 53rd IEEE international Midwest symposium on circuits and systems (MWSCAS), (pp. 1045–1048).

  4. Wicht, B., Nirschl, T., & Schmitt-Landsiedel, D. (2004). Yield and speed optimization of a latch-type voltage sense amplifier. IEEE Journal of Solid-State Circuits, 39(7), 1148–1158.

    Article  Google Scholar 

  5. Goll, B., & Zimmermann, H. (2009). A comparator with reduced delay time in 65-nm CMOS for supply voltages down to 0.65 V. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(11), 810–814.

    Article  Google Scholar 

  6. Moni, D., & Jisha, P. (2012). High-speed and low-power dynamic latch comparator. In International conference on devices, circuits and systems (ICDCS).

  7. Lan, S., Yuan, C., Lam, Y., & Siek, L. (2011). An ultra low-power rail-to-rail comparator for ADC designs. In 54th international Midwest symposium on circuits and systems (MWSCAS) (pp. 1–4).

  8. van Elzakker, M., van Tuijl, E., Geraedts, P., Schinkel, D., Klumperink, E., & Nauta, B. (2008). A 1.9 μW 4.4fJ/conversion-step 10b 1MS/s charge-redistribution ADC. In IEEE international solid-state circuits conference (ISSCC) 2008, digest of technical papers (pp. 244–610).

  9. Babayan-Mashhadi, S., & Lotfi, R. (2013). Analysis and design of a low-voltage low-power double-tail comparator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 343–352.

    Article  Google Scholar 

  10. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits. New York: Wiley.

    Google Scholar 

  11. Wouters, D., Colinge, J., & Maes, H. (1990). Subthreshold slope in thin-film SOI MOSFETs. IEEE Transactions on Electron Devices, 37(9), 2022–2033. doi:10.1109/16.57165.

    Article  Google Scholar 

  12. Lei, K. M., Mak, P. I., & Martins, R. P. (2013). Systematic analysis and cancellation of kickback noise in a dynamic latched comparator. Analog Integrated Circuits and Signal Processing, 77(2), 277–284. doi:10.1007/s10470-013-0156-1.

    Article  Google Scholar 

  13. Wang, Y. T., & Razavi, B. (2000). An 8-bit 150-MHz CMOS A/D converter. IEEE Journal of Solid-State Circuits, 35(3), 308–317.

    Article  Google Scholar 

  14. Nathawad, L., Urata, R., Wooley, B., & Miller, D. (2003). A 40-GHz-bandwidth, 4-bit, time-interleaved A/D converter using photoconductive sampling. IEEE Journal of Solid-State Circuits, 38(12), 2021–2030.

    Article  Google Scholar 

  15. Figueiredo, P., & Vital, J. (2006). Kickback noise reduction techniques for CMOS latched comparators. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(7), 541–545. doi:10.1109/TCSII.2006.875308.

    Article  Google Scholar 

  16. Johns, D., & Martin, K. W. (1997). Analog integrated circuit design. New York: Wiley.

    MATH  Google Scholar 

  17. Uyttenhove, K., & Steyaert, M. (2003). A 1.8-V 6-bit 1.3-GHz flash ADC in 0.25-μm CMOS. IEEE Journal of Solid-State Circuits, 38(7), 1115–1122. doi:10.1109/JSSC.2003.813244.

    Article  Google Scholar 

  18. Amaral, P., Goes, J., Paulino, N., & Steiger-Garcao, A. (2002). An improved low-voltage low-power CMOS comparator to be used in high-speed pipeline ADCs. In IEEE international symposium on circuits and systems (ISCAS) (Vol. 5, pp. 141–144).

  19. Kim, S., & Song, M. (2001). An 8-bit 200 MSPS CMOS A/D converter for analog interface module of TFT-LCD driver. In IEEE international symposium on circuits and system (ISCAS) (Vol. 1, pp. 528–531).

  20. Lu, J., & Holleman, J. (2012). A low-power dynamic comparator with time-domain bulk-driven offset cancellation. In IEEE international symposium on circuits and systems (ISCAS) (pp. 2493–2496).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Bahmanyar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahmanyar, P., Maymandi-Nejad, M., Hosseini-Khayat, S. et al. Design and analysis of an ultra-low-power double-tail latched comparator for biomedical applications. Analog Integr Circ Sig Process 86, 159–169 (2016). https://doi.org/10.1007/s10470-015-0632-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0632-x

Keywords

Navigation