Skip to main content
Log in

Fractional-order multi-phase oscillators design and analysis suitable for higher-order PSK applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Recently, multi-phase oscillator design witnesses a lot of progress in communication especially phase shift keying based systems. Yet, there is a lack in design multi-phase oscillator with different fractional phase shifts. Thus, in this paper, a new technique to design and analyze a multi-phase oscillator is proposed. The proposed procedure is built based on the fractional-order elements or constant phase elements in order to generate equal or different phase shifts. The general characteristics equation for any oscillator is studied to derive expressions for the oscillation conditions and oscillation frequency. Also, stability analysis is introduced to guarantee the oscillation. Then, different examples of oscillators for equal and different phase shifts are introduced with their simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Biswas, K., Sen, S., & Dutta, P. K. (2006). Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Transactions on Circuits and Systems Part 1 Regular Papers, 53(9), 802.

    Article  Google Scholar 

  2. Biswas, K., Thomas, L., Chowdhury, S., Adhikari, B., & Sen, S. (2008). Impedance behaviour of a microporous pmma-film coated constant phase element based chemical sensor. International Journal of Smart Sensing and Intelligent Systems, 1(4), 922–939.

    Google Scholar 

  3. Caponetto, R. (2010). Fractional order systems: Modeling and control applications (72nd ed.). Singapore: World Scientific.

    Google Scholar 

  4. Carlson, G., & Halijak, C. (1964). Approximation of fractional capacitors (1/s) (1/n) by a regular newton process. IEEE Transactions on Circuit Theory, 11(2), 210–213.

    Article  Google Scholar 

  5. Diethelm, K., Ford, N. J., & Freed, A. D. (2002). A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 29(1–4), 3–22.

    Article  MathSciNet  MATH  Google Scholar 

  6. Elshurafa, A. M., Almadhoun, M. N., Salama, K., & Alshareef, H. (2013). Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Applied Physics Letters, 102(23), 232901.

    Article  Google Scholar 

  7. Elwakil, A. S. (2010). Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits and Systems Magazine, 10(4), 40–50.

    Article  Google Scholar 

  8. Fouda, M., Soltan, A., Radwan, A., & Soliman, A. (2014). Multi-phase oscillator for higher-order psk applications. In 21st IEEE international conference on electronics, circuits and systems (ICECS) (pp. 494–497).

  9. Haba, T. C., Ablart, G., Camps, T., & Olivie, F. (2005). Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon. Chaos, Solitons & Fractals, 24(2), 479–490.

    Article  Google Scholar 

  10. Haykins, S. (2010). Digital communication. New Delhi: Wiley.

    Google Scholar 

  11. Ibrahim, G., Hafez, A., & Khalil, A. (2013). An ultra low power qpsk receiver based on super-regenerative oscillator with a novel digital phase detection technique. AEU-International Journal of Electronics and Communications, 67(11), 967–974.

    Article  Google Scholar 

  12. Jesus, I. S., Machado, J., Cunha, J. B., Silva, M. F. (2006). Fractional order electrical impedance of fruits and vegetables. In Proceedings of the 25th IASTED international conference on modeling, indentification, and control (pp. 489–494). ACTA Press.

  13. Krishna, B., Reddy, K. (2008). Active and passive realization of fractance device of order 1/2. Active and Passive electronic components.

  14. Loescharataramdee, C., Kiranon, W., Sangpisit, W., Yadum, W. (2001). Multiphase sinusoidal oscillators using translinear current conveyors and only grounded passive components. In: Proceedings of the IEEE 33rd southeastern symposium on system theory (pp. 59–63).

  15. Michio, S., Hirano, Y., Miura, Y. F., & Saito, K. (1999). Simulation of fractal immittance by analog circuits: an approach to the optimized circuits. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 82(8), 1627–1635.

    Google Scholar 

  16. Maundy, B., Elwakil, A., & Gift, S. (2012). On the realization of multiphase oscillators using fractional-order allpass filters. Circuits, Systems, and Signal Processing, 31(1), 3–17.

    Article  MathSciNet  Google Scholar 

  17. Moaddy, K., Radwan, A. G., Salama, K. N., Momani, S., & Hashim, I. (2012). The fractional-order modeling and synchronization of electrically coupled neuron systems. Computers & Mathematics with Applications, 64(10), 3329–3339.

    Article  MathSciNet  MATH  Google Scholar 

  18. Nakagawa, M., & Sorimachi, K. (1992). Basic characteristics of a fractance device. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 75(12), 1814–1819.

    Google Scholar 

  19. Ogata, K., & Yang, Y. (1970). Modern control engineering. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  20. O’hara, B., Petrick, A. (2005). IEEE 802.11 handbook: A designer’s companion. IEEE Standards Association.

  21. Oustaloup, A., Melchior, P., Lanusse, P., Cois, O., Dancla, F. (2000). The crone toolbox for matlab. In: IEEE international symposium on computer-aided control system design. CACSD 2000, (pp. 190–195).

  22. Radwan, A., Soliman, A., Elwakil, A., & Sedeek, A. (2009). On the stability of linear systems with fractional-order elements. Chaos, Solitons & Fractals, 40(5), 2317–2328.

    Article  MATH  Google Scholar 

  23. Radwan, A. G., Elwakil, A. S., & Soliman, A. M. (2008). Fractional-order sinusoidal oscillators: Design procedure and practical examples. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(7), 2051–2063.

    Article  MathSciNet  MATH  Google Scholar 

  24. Radwan, A. G., Shamim, A., & Salama, K. N. (2011). Theory of fractional order elements based impedance matching networks. IEEE Microwave and Wireless Components Letters, 21(3), 120–122.

    Article  Google Scholar 

  25. Rankl, W., & Effing, W. (2010). Smart card handbook. New York: Wiley.

    Book  Google Scholar 

  26. Sabatier, J., Agrawal, O. P., & Machado, J. T. (2007). Advances in fractional calculus. New York: Springer.

    Book  MATH  Google Scholar 

  27. Saito, K., & Michio, S. (1993). Simulation of power-law relaxations by analog circuits: Fractal distribution of relaxation times and non-integer exponents. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 76(2), 204–209.

    Google Scholar 

  28. Soliman, A. M. (2010). Transformation of oscillators using Op Amps, unity gain cells and CFOA. Analog Integrated Circuits and Signal Processing, 65(1), 105–114.

    Article  Google Scholar 

  29. Soltan, A., Radwan, A., & Soliman, A. (2013). CCII based KHN fractional order filter. In: IEEE 56th international midwest symposium on circuits and systems (MWSCAS), (pp. 197–200).

  30. Soltan, A., Radwan, A., & Soliman, A. M. (2012). Fractional order filter with two fractional elements of dependant orders. Microelectronics Journal, 43, 818–827.

    Article  Google Scholar 

  31. Soltan, A., Radwan, A. G., & Soliman, A. M. (2013). CCII based fractional filters of different orders. Journal of Advanced Research, 5, 157–164.

    Article  Google Scholar 

  32. Soltan, A., Radwan, A. G., & Soliman, A. M. (2014). Fractional order sallen-key and khn filters: Stability and poles allocation. Circuits, Systems, and Signal Processing, 34, 1–20.

    Google Scholar 

  33. Soltan, A., Soliman, A. M., & Radwan, A. G. (2014). Analog circuit design in the fractional order domain. Saarbrucken: Lap Lambert Academic.

    Google Scholar 

  34. Valério, D., & da Costa, J. S. (2004). Ninteger: A non-integer control toolbox for matlab. In: 1st IFAC workshop on fractional differentiation and its applications, Bordeaux.

  35. Valério, D., Trujillo, J. J., Rivero, M., Machado, J. T., & Baleanu, D. (2013). Fractional calculus: A survey of useful formulas. The European Physical Journal Special Topics, 222(8), 1827–1846.

    Article  Google Scholar 

  36. Vassis, D., Kormentzas, G., Rouskas, A., & Maglogiannis, I. (2005). The IEEE 802.11 g standard for high data rate wlans. IEEE Network, 19(3), 21–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed E. Fouda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouda, M.E., Soltan, A., Radwan, A.G. et al. Fractional-order multi-phase oscillators design and analysis suitable for higher-order PSK applications. Analog Integr Circ Sig Process 87, 301–312 (2016). https://doi.org/10.1007/s10470-016-0716-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0716-2

Keywords

Navigation