Skip to main content
Log in

A low-voltage low-power 0.25 µm integrated single transistor active inductor-based filter

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper we present a 0.25 µm BiCMOS Technology bandpass filter implementation based on a single transistor Active Inductor (AI). The high-Q AI integrated circuit is designed by the use of a single transistor with a compensation network that allows to control both the inductance and its series resistance value. The AI-based high frequency bandpass filter has a center frequency of 2000 MHz (useful for radio and radar applications) and a 3 dB bandwidth of about 6 MHz with a quality factor of about 330. Moreover, a discrete prototype of the same AI has been also designed and measured. Measurements results on the discrete board have shown a 3 dB bandwidth of about 10 MHz, a noise figure of 6 dB, a −10 dBm P1 dB compression point with 80 dB dynamic range. The power supply is 1.2 V with a power consumption of 800 µW showing low-voltage low-power operation capability together with good general performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Achigui, H. F., Sawan, M., & Fayomi, C. J. B. (2007). 1 V fully balanced differential amplifiers: Implementation and experimental results. Analog Integrated Circuit and Signal Processing, 53, 19–25.

    Article  Google Scholar 

  2. Stornelli, V. (2009). Low voltage Low Power Fully Differential Buffer. Journal of Circuits, Systems, and Computers, 18(3), 497–502.

    Article  Google Scholar 

  3. Stornelli, V., Pantoli, L., Leuzzi, G., & Ferri, G. (2013). Fully differential DDA-based fifth and seventh order Bessel low pass filters and buffers for DCR radio systems. Analog Integrated Circuits and Signal Processing, 75(2), 305–310.

    Article  Google Scholar 

  4. Hara, S., Tokumitsu, T., & Aikawa, M. (1989). lossless broad band monolithic microwave active inductor. IEEE Transactions on Microwave Theory and Techniques, 37(12), 1979–1984.

    Article  Google Scholar 

  5. Hara, S., Tokumitsu, T., Tanaka, T., & Aikawa, M. (1988). Broad band monolithic microwave active inductor and its application to miniaturized wide band amplifiers. IEEE Transactions on Microwave Theory and Techniques, 36(12), 1920–1924.

    Article  Google Scholar 

  6. Cho, Y., Hong, S., & Kwon, Y. (1997). A novel active inductor and its application to inductance- controlled oscillator. IEEE Transactions on Microwave Theory and Techniques, 45(8), 1208–1213.

    Article  Google Scholar 

  7. Thanachayanont, A. (2002). CMOS transistor-only active inductor for IF/RF applications. In Proceedings of IEEE International Conference on Industry Technology, Thailand (Vol. 1, pp. 1209–1212).

  8. Yodprasit, U., & Ngarmnil, J. (2000). Q-enhancing technique for RF CMOS active inductor (Vol. 5, pp. 589–592). Genova: ISCAS.

    Google Scholar 

  9. Campbell, C. F., & Weber, R. J. (1991). Design of a broadband microwave BJT active inductor circuit. In Proceedings of the 34th Midwest Symposium on Circuits and Systems (Vol. 1, pp. 407–409).

  10. Filanovsky, I. M., Reja, M., & Oliveira, L. B. (2011). New non-gyrator type active inductors with applications (Vol. 1, pp. 1–4). Seoul: MWSCAS.

    Google Scholar 

  11. Colucci, P., Leuzzi, G., Pantoli, L., & Stornelli, V. (2012). Third order integrable UHF bandpass filter using active inductors. Microwave and Optical Technology Letters, 54, 1426–1429.

    Article  Google Scholar 

  12. Leuzzi, G., Stornelli, V., Pantoli, L., & Del Re, S. (2015). Single transistor high linearity and wide dynamic range active inductor. International Journal of Circuit Theory and Applications, 43(3), 277–285.

    Article  Google Scholar 

  13. Stornelli, V., Pantoli, L., & Leuzzi, G. (2013). High quality factor L-band active inductor-based band-pass filters. Journal of Circuits, Systems and Computers, 22(03), 1350014.

    Article  Google Scholar 

  14. Branchi, P., Pantoli, L., Stornelli, V., & Leuzzi, G. (2014). RF and microwave high-Q floating active inductor design and implementation. International Journal of Circuit Theory and Applications. doi:10.1002/cta.1991.

    Google Scholar 

  15. Platzker, A., Struble, W., & Hetzler, K. T. (1993). Instabilities diagnosis and the role of K in microwave circuits. In 1993 IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA (Vol. 3, pp. 1185–1188).

  16. Campbell, C., & Brown, S. Modified S-probe circuit element for stability analysis. In White Paper from AWR.

  17. Pantoli, L., Leuzzi, G., Barigelli, A., Vitulli, F., & Suriani, A. (2015). An ultra wideband LNA module for space applications. In 2015 10th European Microwave Integrated Circuits Conference (EuMIC), Paris (pp. 160–163). doi:10.1109/EuMIC.2015.7345093.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Stornelli.

Ethics declarations

Ethical approval

The authors declare that the paper is compliant with the journal ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantoli, L., Stornelli, V. & Leuzzi, G. A low-voltage low-power 0.25 µm integrated single transistor active inductor-based filter. Analog Integr Circ Sig Process 87, 463–469 (2016). https://doi.org/10.1007/s10470-016-0727-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0727-z

Keywords

Navigation