Skip to main content
Log in

Optimum design of a double-tail latch comparator on power, speed, offset and size

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Transistor sizing is one of the most critical parts of comparator design which has a significant influence on comparator specifications. This paper presents an optimum design of a double-tail latch comparator based on transistor sizing with a great certainty to reach the best possible design due to using Hspice (as a software simulator) linked with a heuristic algorithm. To achieve a low-power, high-speed, low offset and, small size comparator, the multi-objective inclined planes optimization and Hspice were linked and several Pareto-fronts were obtained. As a result of analyzing the Pareto-fronts, power and total sizes of transistors have a tradeoff with delay and offset voltage. Meanwhile, the results comparison with a recent work shows the superiority of the present approach performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chavan, Y. V., & Mishra, D. K. (2011). Threshold inverter quantizer based comparator for artificial silicon retina. Journal of Optics, 40(2), 39–44.

    Article  Google Scholar 

  2. Chen, T.-H., Chen, J., & Clark, L. T. (2006). Subthreshold to above threshold level shifter design. Journal of Low Power Electronics, 2(2), 251–258.

    Article  Google Scholar 

  3. Casper, S. L. (1994, November 22). P-channel sense amplifier pull-up circuit incorporating a voltage comparator for use in DRAM memories having non-bootstrapped word lines. Google Patents.

  4. Wang, T., Wang, D., Hurst, P. J., Levy, B. C., & Lewis, S. H. (2009). A level-crossing analog-to-digital converter with triangular dither. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 2089–2099.

    Article  MathSciNet  Google Scholar 

  5. Wicht, B., Nirschl, T., & Schmitt-Landsiedel, D. (2004). Yield and speed optimization of a latch-type voltage sense amplifier. IEEE Journal of Solid-State Circuits, 39(7), 1148–1158. doi:10.1109/JSSC.2004.829399.

    Article  Google Scholar 

  6. Sadeghipour, K. D. (2011). An improved low offset latch comparator for high-speed ADCs. Analog Integrated Circuits and Signal Processing, 66(2), 205–212.

    Article  Google Scholar 

  7. Zhu, Z., Yu, G., Wu, H., Zhang, Y., & Yang, Y. (2013). A high-speed latched comparator with low offset voltage and low dissipation. Analog Integrated Circuits and Signal Processing, 74(2), 467–471.

    Article  Google Scholar 

  8. Jeon, H., & Kim, Y. Bin. (2012). A novel low-power, low-offset, and high-speed CMOS dynamic latched comparator. Analog Integrated Circuits and Signal Processing, 70(3), 337–346. doi:10.1007/s10470-011-9687-5.

    Article  Google Scholar 

  9. Zhu, Z., & Liang, Y. (2015). A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18-CMOS for medical implant devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(9), 2167–2176.

    Article  Google Scholar 

  10. Uyttenhove, K., & Steyaert, M. S. J. (2002). Speed–power–accuracy tradeoff in high-speed. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 49(4), 280–287.

    Article  Google Scholar 

  11. Powell, M. J. D. (1970). A new algorithm for unconstrained optimization. In Nonlinear programming: Proceedings of a symposium conducted by the mathematics research center, the University of Wisconsin, Madison, May 4–6 (pp. 31–65). Madison: Academic Press.

  12. Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970). A heuristic algorithm for the n job, m machine sequencing problem. Management Science, 16(10), B-630.

    Article  MATH  Google Scholar 

  13. Dewani, B., Daigavane, M. B., & Zadgaonkar, A. S. (2012). Application of metaheuristics in transmission network expansion planning-an overview. International Journal of Advances in Engineering & Technology, 5(1), 555–561.

    Google Scholar 

  14. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In IEEE international conference on neural networks (Vol. 4, pp. 1942–1948). Perth, Australia.

  15. Jin, Y.-X., Cheng, H.-Z., Yan, J., & Zhang, L. (2007). New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research, 77(3), 227–233.

    Article  Google Scholar 

  16. Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Italy.

  17. Nanda, S. J., & Panda, G. (2014). A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm and Evolutionary Computation, 16, 1–18.

    Article  Google Scholar 

  18. Zahiri, S.-H., & Seyedin, S.-A. (2007). Swarm intelligence based classifiers. Journal of the Franklin Institute. doi:10.1016/j.jfranklin.2005.12.006.

    MATH  Google Scholar 

  19. Vakili, M. R., & Zahiri, S. H. (2013). Parasitic-aware optimization of a 2.4 GHz cross-coupled LC VCO using IPO compared to PSO. In 2013 3th International e conference on computer and knowledge engineering (ICCKE) (pp. 35–39). IEEE.

  20. Mohammadi, A., Mohammadi, M., & Zahiri, S. H. (2015). A novel solution based on multi-objective AI techniques for optimization of CMOS LC_VCOs. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 7(2), 137–144.

    Google Scholar 

  21. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

  22. Mozaffari, M. H., Abdy, H., & Zahiri, S.-H. (2016). IPO: An inclined planes system optimization algorithm. Computing & Informatics, 35(1), 222–240.

    MathSciNet  Google Scholar 

  23. Razavi, B. (1995). Principles of data conversion system design (Vol. 126). New York: IEEE Press.

    Google Scholar 

  24. Schinkel, D., Mensink, E., Klumperink, E., & Tuijl, E. (2007). A double-tail latch-type voltage sense amplifier with 18 ps setup + hold time. In Proceedings of the international solid-state circuits conference (pp. 314–315). IEEE. doi:10.1109/ISSCC.2007.373420.

  25. Babayan-Mashhadi, S., & Lotfi, R. (2014). Analysis and design of a low-voltage low-power double-tail comparator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 343–352. doi:10.1109/TVLSI.2013.2241799.

    Article  Google Scholar 

  26. Bahmanyar, P., Maymandi-Nejad, M., Hosseini-Khayat, S., & Berekovic, M. (2016). Design and analysis of an ultra-low-power double-tail latched comparator for biomedical applications. Analog Integrated Circuits and Signal Processing, 86(2), 159–169. doi:10.1007/s10470-015-0632-x.

    Article  Google Scholar 

  27. Johns, D., & Martin, K. (2008). Analog integrated circuit design. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Analog+Integrated+Circuit+Design#0.

  28. Mozaffari, M. H., Abdy, H., & Zahiri, S. H. (2013). Application of inclined planes system optimization on data clustering. In 1st Iranian conference on pattern recognition and image analysis, PRIA 2013. doi:10.1109/PRIA.2013.6528451.

  29. Zahiri, S.-H., & Seyedin, S.-A. (2007). Swarm intelligence based classifiers. Journal of the Franklin Institute, 344(5), 362–376. doi:10.1016/j.jfranklin.2005.12.006.

    Article  MATH  Google Scholar 

  30. Pelgrom, M. J. M., Tuinhout, H. P., & Vertregt, M. (1998). Transistor matching in analog CMOS applications. In International electron devices meeting 1998. technical digest (Cat. No.98CH36217), pp. 915–918. doi:10.1109/IEDM.1998.746503.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Yaqubi.

Appendix

Appendix

See Table 5.

Table 6 Comparison between proposed comparator and other works

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaqubi, E., Zahiri, S.H. Optimum design of a double-tail latch comparator on power, speed, offset and size. Analog Integr Circ Sig Process 90, 309–319 (2017). https://doi.org/10.1007/s10470-016-0903-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0903-1

Keywords

Navigation