Skip to main content
Log in

Generation of square and triangular wave with independently controllable frequency and amplitude using OTAs only and its application in PWM

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a self-generating square/triangular wave generator using only the CMOS Operational Transconductance Amplifiers (OTAs) and a grounded capacitor. The output frequency and amplitude of the proposed circuit can be independently and electronically adjusted. The proposed circuit validates its advantage by consuming less amount of power, which is about 71.3 µW. The theoretical aspects are authentically showcased using the PSPICE simulation results. The performance of the proposed circuit is also verified through pre layout and post layout simulation results using the 90 nm GPDK CMOS parameters. A prototype of this circuit has been made using commercially available IC CA3080 for experimental verification. Experimentation also gives the similar output as per the theoretical proposition. The designed circuit is also made applicable to perform pulse width modulation (PWM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC design: The current-mode approach. London: Peter Peregrinus.

    Google Scholar 

  2. Schmid, H. (2002). Why the terms ‘current mode’ and ‘voltage mode’ neither divide nor qualify circuits. IEEE ISCAS, 2, II-29–II-32.

    Google Scholar 

  3. Khucharoensin, S., & Kasemsuwan, V. (2003). High performance CMOS current-mode precision full-wave rectifier. IEEE ISCAS, 1, I-41–I-44.

    Google Scholar 

  4. Serigo, F. (2002). Design with operation amplifiers and analog integrated circuits (3rd ed.). New York: McGraw-Hall.

    Google Scholar 

  5. Toumazou, C., Lidgey, F. J., & Cheung, P. Y. K. (1989). Current-mode analogue signal processing circuits-a review of recent developments. In IEEE International Symposium on Circuits and Systems (pp. 1572–1575).

  6. Pal, D., Srinivasulu, A., Demosthenous, A., Pal, B. B., & Das, B. N. (2009). Current conveyor-based square/triangular waveform generators with improved linearity. IEEE Transactions on Instrumentation and Measurement, 58(7), 2174–2180.

    Article  Google Scholar 

  7. Rakovich, B. D., & Tesic, S. L. (1968). A New transistor square-wave generator using two regenerative switches. IEEE Transactions on Instrumentation and Measurement, 17(1), 68–73.

    Article  Google Scholar 

  8. Siripruchyanun, M., & Wardkein, P. (2001). Temperature-insensitive and electronically adjustable square/triangular wave generation based on novel Schmitt trigger oscillator. In Proceedings of ISIC2001, 9th International symposium on Integrated Circuits, Singapore (pp. 219–222).

  9. Lo, Y. K., Chien, H. C., & Chiu, H. J. (2008). Tunable waveform generation using dual-current output OTAs. Journal of Circuits, Systems and Computers, 17(6), 1193–1202.

    Article  Google Scholar 

  10. Chung, W. S., Kim, H., Cha, H. W., & Kim, H. J. (2005). Triangular/square-wave generator with independently controllable frequency and amplitude. IEEE Transactions on Instrumentation and Measurement, 54(1), 105–109.

    Article  Google Scholar 

  11. Almashary, B., & Alhokail, H. (2000). Current-mode triangular wave generator using CCIIs. Microelectronics Journal, 31(4), 239–243.

    Article  Google Scholar 

  12. Del, S. R., Marcellis, A. D., Ferri, G., & Stornelli, V. (2007). Low voltage integrated astable multivibrator based on a single CCII. In Microelectronics and Electronics Conference 2007 (pp. 177–180).

  13. Haque, A. S., Hossain, M. M., Davis, W. A., Russell, H. T., & Carter, R. L. (2008). Design of sinusoidal, triangular, and square wave generator using current feedback operational amplifier (CFOA). In IEEE Region 5th Conference (pp. 1–5).

  14. Lo, Y. K., & Chien, H. C. (2007). Switch-controllable OTRA-based square/triangular waveform generator. IEEE Transactions on Circuits and Systems II, 54(12), 1110–1114.

    Article  Google Scholar 

  15. Hou, C. L., Chien, H. C., & Lo, Y. K. (2005). Square wave generators employing OTRAs. IEEE Proceedings Circuits, Devices and Systems, 152, 718–722.

    Article  Google Scholar 

  16. Mathis, W. (2001). Nonlinear systems and communications systems. In Proceedings of the International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS’01) (Vol. 1, pp. 293–296).

  17. Roden, M. S. (1996). Analog and digital communication systems (4th ed.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  18. Maksimovic, D., & Cuk, S. (1991). A united analysis of PWM converters in discontinuous modes. IEEE Transactions on Power Electronics, 6, 476–490.

    Article  Google Scholar 

  19. APEX Microtechnology. PWM basics, pulse width modulator amplifier. Application Note 30.

  20. Pandey, R., Pandey, N., & Paul, S. K. (2013). Voltage mode pulse width modulator using single operational transresistance amplifier. Journal of Engineering. doi:10.1155/2013/309124. (Article ID 309124).

    Google Scholar 

  21. Siripruchyanun, M., Wardkein, P., & Sangpisit, W. (2000). Simple pulse width modulator using current conveyor. In Proceedings of the TENCON’00 (Vol. 1, pp. 452–457).

  22. Kim, H., Kim, H. J., & Chung, W. S. (2007). Pulsewidth modulation circuits using CMOS OTAs. IEEE Transactions on Circuits and Systems I, 54(9), 1869–1878.

    Article  Google Scholar 

  23. Siripruchyanun, M., & Wardkein, P. (2003). A fully independently adjustable, integrable simple current controlled oscillator and derivative PWM signal generator. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 86(12), 3119–3126.

    Google Scholar 

  24. Minaei, S., & Yuce, E. (2009). A simple Schmitt trigger circuit with grounded passive elements and its application to square/triangular wave generator. Circuits, Systems, and Signal Processing, 31(3), 877–888.

    Article  Google Scholar 

  25. Chien, H. C. (2013). Square/Triangular Wave Generator Using Single DO-DVCC and Three Grounded Passive Components. American Journal of Electrical and Electronic Engineering, 1(2), 32–36.

    Article  MathSciNet  Google Scholar 

  26. Graf, R. F. (1996). Oscillator circuits. Boston, MA: Newnes.

    Google Scholar 

  27. Senani, R., Bhaskar, D. R., Singh, V. K., & Sharma, R. K. (2016). Non sinusoidal waveform generators/relaxation oscillators using other building blocks. Switzerland: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the TEQIP-II Project under Govt. of India (Rajeev Kr. Ranjan/MRP-DDF/ECE/TEQIP) at Indian Institute of Technology (Indian School of Mines) Dhanbad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar Ranjan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R.K., Mazumdar, K., Pal, R. et al. Generation of square and triangular wave with independently controllable frequency and amplitude using OTAs only and its application in PWM. Analog Integr Circ Sig Process 92, 15–27 (2017). https://doi.org/10.1007/s10470-017-0971-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0971-x

Keywords

Navigation