Skip to main content
Log in

Self generating square/triangular wave and pulse width modulator using a single MO-CCCDTA

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A self-generating square/triangular wave and pulse width modulator (PWM) using multiple output current controlled current differencing transconductance amplifier (MO-CCCDTA) is presented. To obtain all the three functions simultaneously from the same topology, the MO-CCCDTA is modified a little bit. The characterisation of the modified MO-CCCDTA structure shows that the parasitic resistances at input terminals (n and p) can be varied via bias current. The maximum useful frequency range is found to be 635 MHz, which is higher than the available literature. The waveform generator and PWM circuit use only one MO-CCCDTA, one grounded capacitor and no resistor; hence suitable for IC implementation. The duty cycle of proposed pulse width modulation can be tuned by bias current of MO-CCCDTA over a wide range. The performances of the proposed block and its applications (square/triangular/PWM) are verified by PSPICE simulation using TSMC 0.35 µm technology. The power consumption is about 1.12 mW. To verify experimentally, a prototype of MO-CCCDTA has been made using commercially available ICs (AD844AN and CA3080) on printed circuit board. The simulation and experimental results verify theoretical proposition well. Monte carlo simulation is carried out, which proves satisfactory performance of the proposed circuit against mismatches. The performance of the proposed circuit is also verified through pre-layout and post-layout simulation results. The required chip area is only 22.415 × 14.6 µm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. Franco, S. (2002). Design with operation amplifiers and analog integrated circuits (3rd ed.). Mc Graw-Hall: New York.

    Google Scholar 

  2. Jacob, J. M. (2000). Analog integrated circuit applications. New Jersey: Prentice–Hall.

    Google Scholar 

  3. Abuelma’atti, M. T., & Alabsi, M. K. (2004). A low-cost dual-slope triangular/square wave generator. International Journal for Electronics Engineering, 91(3), 185–190.

    Article  Google Scholar 

  4. Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC design: The current–mode approach. London: Petergrinus.

    Google Scholar 

  5. Bhaskar, D. R., Sharma, V. K., Monis, M., & Rizvi, S. M. I. (1999). New current-mode universal biquad filter. Microelectronics Journal, 30, 837–839.

    Article  Google Scholar 

  6. Almashary, B., & Alhokail, H. (2000). Current-mode triangular wave generator using CCIIs. Microelectronics Journal, 31(4), 239–243.

    Article  Google Scholar 

  7. Pal, D., Srinivasulu, A., Pal, B. B., Demosthenous, A., & Das, B. N. (2009). Current Conveyor-based square/triangular waveform generators with improved linearity. IEEE Transactions on Instrumentation and Measurement, 58(7), 2174–2180.

    Article  Google Scholar 

  8. Haque, A. K., Hossain, M. M., Davis, W. A., Russell, Jr. H. T., & Carter, R. L. (2008) Design of sinusoidal, triangular, and square wave generator using current feedback operational amplifier (CFOA). In IEEE region 5 conference (pp. 1–5).

  9. Minaei, S., & Yuce, E. (2012). A simple schmitt trigger circuit with grounded passive elements and its application to square/triangular wave generator. Circuits Systems, and Signal Processing, 31, 877–888.

    Article  Google Scholar 

  10. Chien, H. C. (2014). A current/voltage-controlled four-slope operation square-/triangular-wave generator and a dual-mode pulse width modulation signal generator employing current-feedback operational amplifiers. Microelectronics Journal, 45, 634–647.

    Article  Google Scholar 

  11. Lo, Y. K., & Chien, H. C. (2007). Switch-controllable OTRA-based square/triangular waveform generator. IEEE Transactions on Circuits and Systems II, 12(54), 1110–1114.

    Google Scholar 

  12. Chien, H. C. (2013). Square/triangular wave generator using single DO-DVCC and three grounded passive components. American Journal of Electrical and Electronic Engineering, 1(2), 32–36. https://doi.org/10.12691/ajeee-1-2-3.

    Article  Google Scholar 

  13. Chung, W. S., Kim, H., Cha, H. W., & Kim, H. J. (2005). Triangular/square-wave generator with independently controllable frequency and amplitude. IEEE Transactions on Instrumentation and Measurement, 54(1), 105–109.

    Article  Google Scholar 

  14. Siripruchyanun, M., & Wardkein, P. A. (2003). A fully independently adjustable, integrable simple current controlled oscillator and derivative PWM signal generator. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 86(12), 3119–3126.

    Google Scholar 

  15. Ranjan, R. K., Mazumdar, K., Pal, R., & Chandra, S. (2017). Generation of square and triangular wave with independently controllable frequency and amplitude using OTAs only and its application in PWM. Analog Integrated Circuit and Signal Processing, 92(1), 15–27.

    Article  Google Scholar 

  16. Marcellis, A. D., Carlo, C. D., Ferri, G., & Stornelli, A. (2011). CCII-based wide frequency range square waveform generator. International Journal of Circuit Theory and Applications, 41(3), 1–13.

    Google Scholar 

  17. Srinivasulu, A. (2011). A novel current conveyor-based Schmitt trigger and its application as a relaxation oscillator. International Journal of Circuit Theory and Applications, 39, 679–686. https://doi.org/10.1002/cta.669.

    Article  Google Scholar 

  18. Kumbun, J., & Siripruchyanun, M. (2010). MO-CTTA-based electronically controlled current-mode square/triangular wave generator. In Proceeding of the 1st international conference on technical education (pp. 158–162).

  19. Srisakul, T., Silapan, P., & Siripruchyanun, M. (2011). An electronically controlled current-mode triangular/square wave generator employing MO-CCCCTAs. In The proceeding of the 8th international conference on electrical engineering/electronics, computer, telecommunications, and information technology (ECTI-CON) (pp. 82–85).

  20. Kumar, A., Chaturvedi, B., & Maheshwari, S. (2017). A fully electronically controllable Schmitt trigger and duty cycle-modulated waveform generator. International Journal of Circuit Theory and Applications. https://doi.org/10.1002/cta.2307.

    Google Scholar 

  21. Silapan, P., & Siripruchyanun, M. (2011). Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integrated Circuits and Signal Processing, 68(1), 111–128. https://doi.org/10.1007/s10470-010-9593-2.

    Article  Google Scholar 

  22. Roden, M. S. (1996). Analog and digital communication systems (4th ed.). Prentice-Hall Engle wood Cliffs NJ: USA.

    Google Scholar 

  23. Maksimović, D., & Ćuk, S. (1991). A unified analysis of PWM converters in discontinuous modes. IEEE Transactions on Power Electronics, 6(3), 476–490.

    Article  Google Scholar 

  24. Caldwell, J. (2013). Analog Pulse Width Modulation. SLAU508.

  25. Siripruchyanun, M., Wardkein, P., & Sangpisit, W. (2000). A simple pulse width modulator using current conveyor. In Proceedings of TENCON, 1, 452–457.

    Google Scholar 

  26. Kim, H., Kim, H. J., & Chung, W. S. (2007). Pulse width modulation circuits using CMOS OTAs. IEEE Transactions on Circuits and Systems-I, 54, 1869–1878.

    Article  Google Scholar 

  27. APEX Microtechnology. PWM basics, pulse width modulator amplifier. Application Note 30.

  28. Chien, H. C. (2012). Voltage-controlled dual slope operation square/triangular wave generator and its application as a dual mode operation pulse width modulator employing differential voltage current conveyors. Microelectronics Journal, 43(12), 962–974.

    Article  Google Scholar 

  29. Silapan, P., & Siripruchyanun, M. (2010). A simple current-mode PWM signal generator employing only single active element. In Proceedings of the 1st international conference on technical education (Vol. 21–22, pp. 20–21).

  30. Pandey, R., Pandey, N., & Paul, S. K. (2013). Voltage mode pulse width modulator using single operational transresistance amplifier. Journal of Engineering, 2013, 6.

    Google Scholar 

  31. Siripruchyanun, M., & Jaikla, W. (2008). CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. AEU-International Journal of Electronics and Communications, 62(4), 277–287.

    Article  Google Scholar 

  32. Cataldo, G. D., Palumbo, G., & Pennisi, S. (1995). A Schmitt trigger by means of CCII+. International Journal of Circuit Theory and Applications, 23, 161–165.

    Article  Google Scholar 

  33. Palumbo, G. (1998). A novel fully adjustable CMOS current Schmitt trigger with a 1.5 V power supply. International Journal of Circuit Theory and Applications, 26, 323–327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal K. Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R.K., Paul, S.K. Self generating square/triangular wave and pulse width modulator using a single MO-CCCDTA. Analog Integr Circ Sig Process 94, 177–193 (2018). https://doi.org/10.1007/s10470-017-1089-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1089-x

Keywords

Navigation