Skip to main content
Log in

On the design of highly linear CMOS digitally programmable operational transconductance amplifiers for low and high-frequency applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel highly linear digitally programmable fully differential operational transconductance amplifier (DPOTA) circuit. Two versions of the proposed DPOTA structure are designed. The first version is optimized for high-frequency operation with current division networks designated to 3-bit control code words. On the other hand, the second version is optimized for low-frequency operation with 4-bit control code words. The third-order harmonic distortion (HD3) of the first DPOTA version remains below − 66 dB up to 0.4 V differential input voltage at 10 MHz frequency. The second DPOTA version achieved HD3 of − 70 dB with an amplitude of 20 mVpp and at 100 Hz frequency. The proposed circuits are designed and simulated in 90 nm CMOS model, BSIM4 (level 54) under a balanced 1.2 V supply voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Hung, C. C., Halonen, K. A., Ismail, M., Porra, V., & Hyogo, A. (1997). A low-voltage, low-power CMOS fifth-order elliptic GM-C filter for baseband mobile, wireless communication. IEEE Transactions on Circuits and Systems for Video Technology, 7(4), 584–593.

    Article  Google Scholar 

  2. Elamien, M. B., & Mahmoud, S. A. (2017). Wide digitally tunable lowpass filter for biomedical and wireless applications. Electronics Letters, 54(3), 124–126.

    Article  Google Scholar 

  3. Galan, J., Carvajal, R. G., Torralba, A., Munoz, F., & Ramirez-Angulo, J. (2005). A low-power low-voltage OTA-C sinusoidal oscillator with a large tuning range. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(2), 283–291.

    Article  Google Scholar 

  4. Ismail, M., & Fiez, T. (1994). Analog VLSI: Signal and information processing. New York: McGraw-Hill.

    Google Scholar 

  5. Mahmoud, S. A., & Soliman, E. A. (2013). Multi-standard receiver baseband chain using digitally programmable OTA based on CCII and current division networks. Journal of Circuits, Systems and Computers, 22(04), 1–5.

    Article  Google Scholar 

  6. Madian, A. H., Mahmoud, S. A., & Soliman, A. M. (2006). New 1.5-V CMOS second generation current conveyor based on wide range transconductor. Analog Integrated Circuits and Signal Processing, 49(3), 267–279.

    Article  Google Scholar 

  7. Mahmoud, S. A., & Soliman, A. M. (1999). New CMOS fully differential difference transconductors and application to fully differential filters suitable for VLSI. Microelectronics journal, 30(2), 169–192.

    Article  Google Scholar 

  8. Bialko, M., & Newcomb, R. W. (1971). Generation of all finite linear circuits using the integrated DVCCS. IEEE Transactions on Circuit Theory, 18(6), 733–736.

    Article  Google Scholar 

  9. Nedungadi, A., & Viswanathan, T. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems, 31(10), 891–894.

    Article  Google Scholar 

  10. Silva-Martinez, J., Steyaert, M. S., & Sansen, W. M. (1991). A large-signal very low-distortion transconductor for high-frequency continuous-time filters. IEEE Journal of Solid State Circuits, 26(7), 946–955.

    Article  Google Scholar 

  11. Wang, Y. T., Lu, F., & Abidi, A. A. (1989). A 12.5 MHz CMOS continuous time bandpass filter. In IEEE 36th international solid-state circuits conference (ISSCC), technical papers (pp. 198–199).

  12. Krummenacher, F., & Joehl, N. (1988). A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE Journal of Solid State Circuits, 23(3), 750–758.

    Article  Google Scholar 

  13. Pennock, J. L. (1985). CMOS triode transconductor for continuous-time active integrated filters. Electronics Letters, 21(18), 817–818.

    Article  Google Scholar 

  14. Wong, S. L. (1989). Novel drain-biased transconductance building blocks for continuous-time filter applications. Electronics Letters, 25(2), 100–101.

    Article  Google Scholar 

  15. Gatti, U., Maloberti, F., Palmisano, G., & Torelli, G. (1994). CMOS triode-transistor transconductor for high-frequency continuous-time filters. IEE Proceedings Circuits, Devices and Systems, 141(6), 462–468.

    Article  Google Scholar 

  16. Tsividis, Y., Czarnul, Z., & Fang, S. C. (1986). MOS transconductors and integrators with high linearity. Electronics Letters, 22(5), 245–246.

    Article  Google Scholar 

  17. Gopinathan, V., Tsividis, Y. P., Tan, K. S., & Hester, R. K. (1990). Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video. IEEE Journal of Solid State Circuits, 25(6), 1368–1378.

    Article  Google Scholar 

  18. Mahmoud, S. A., & Soliman, A. M. (1997). A CMOS programmable balanced output transconductor for analogue signal processing. International Journal of Electronics, 82(6), 605–620.

    Article  Google Scholar 

  19. Elamien, M. B., & Mahmoud, S. A. (2017). Multi-Standard lowpass filter for baseband chain using highly linear digitally programmable OTA. In IEEE 40th international conference on telecommunications and signal processing (TSP2017), Barcelona (pp. 298–301).

  20. Elamien, M. B., & Mahmoud, S. A. (2017). Analysis and design of a highly linear CMOS OTA for portable biomedical applications in 90 nm CMOS. Microelectronics Journal, 70, 72–80.

    Article  Google Scholar 

  21. Sanchez-Sinencio, E., & Silva-Martinez, J. (2000). CMOS transconductance amplifiers, architectures and active filters: A tutorial. IEE Proceedings Circuits Devices and Systems, 147(1), 3–12.

    Article  Google Scholar 

  22. Rezzi, F., Baschirotto, A., & Castello, R. (1995). A 3 V 12–55 MHz BiCMOS pseudo-differential continuous-time filter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(11), 896–903.

    Article  Google Scholar 

  23. Smith, S. L., & Snchez-Sinencio, E. (1996). Low voltage integrators for high-frequency CMOS filters using current mode techniques. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 43(1), 39–48.

    Article  Google Scholar 

  24. Duque-Carrillo, J. F. (1993). Control of the common-mode component in CMOS continuous-time fully differential signal processing. Analog Integrated Circuits and Signal Processing, 4(2), 131–140.

    Article  Google Scholar 

  25. Kuo, K. C., & Leuciuc, A. (2001). A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(10), 937–943.

    Article  Google Scholar 

  26. Popa, C., & Mitrea, O. (2001). Constant gm rail-to-rail CMOS input stage with improved linearity. In Proceedings of the 2nd international symposium on image and signal processing and analysis (ISPA2001), Pula (pp. 511–515).

  27. Elamien, M. B., & Mahmoud, S. A. (2016). A linear CMOS balanced output transconductor using double differential pair with source degeneration and adaptive biasing. In IEEE 59th international midwest symposium on circuits and systems (MWSCAS), 16–19 October, Abu Dhabi (pp. 1–4).

  28. Mahmoud, S. A. (2004). A low voltage CMOS floating resistor. In IEEE international conference on electrical, electronic and computer engineering, ICEEC’04, Cairo, Egypt (pp. 453–456).

  29. Chen, J., Sanchez-Sinencio, E., & Silva-Martinez, J. (2006). Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(3), 499–510.

    Article  Google Scholar 

  30. Leung, B. (2011). VLSI for wireless communication. Berlin: Springer.

    Book  Google Scholar 

  31. Johns, D. A., & Martin, K. (2008). Analog integrated circuit design. Hoboken: Wiley.

    MATH  Google Scholar 

  32. Elamien, M. B., & Mahmoud, S. A. (2016). A 138 dB-CMRR low power instrumentation amplifier with programmable gain for EEG. In UAE Graduate Students Research conference (UAE GSRC2016), Abu Dhabi.

  33. Mahmoud, S. A., Bamakhramah, A., & Al-Tunaiji, S. A. (2013). Low-noise low-pass filter for ECG portable detection systems with digitally programmable range. Circuits, Systems, and Signal Processing, 32(5), 2029–2045.

    Article  MathSciNet  Google Scholar 

  34. Mahmoud, S. A., Hashiesh, M. A., & Soliman, A. M. (2005). Low-voltage digitally controlled fully differential current conveyor. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(10), 2055–2064.

    Article  Google Scholar 

  35. Rezaei, F., & Azhari, S. J. (2015). Transconductor linearization based on adaptive biasing of source-degenerative MOS transistors. Circuits, Systems, and Signal Processing, 34(4), 1149–1165.

    Article  MathSciNet  Google Scholar 

  36. Rezaei, F. (2017). Linearity enhancement in the entire tuning range of CMOS OTA using a new tune compensated source degeneration technique. Microelectronics Journal, 66, 128–135.

    Article  Google Scholar 

  37. Elamien, M. B., & Mahmoud, S. A. (2017). A 1 mhz-10.2 MHz bw / 0 db–70 db gain dpota-based baseband chain receiver. In IEEE international SoC design conference (ISOCC2017), 5–8 November, Seoul, Korea.

  38. Elamien, M. B., & Mahmoud, S. A. (2017). A highly linear dpota-based configurable analog front-end for EXG (EEG, ECG, and EMG). In IEEE international SoC design conference (ISOCC2017), 5–8 November, Seoul, Korea.

  39. Elamien, M. B., & Mahmoud, S. A. (2017). Third-order elliptic lowpass filter for multi-standard baseband chain using highly linear digitally programmable ota. In International conference on applied electronics and engineering (ICAEE2017), 7–8 August, Kuching, Sarawak, Malaysia.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soliman A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elamien, M.B., Mahmoud, S.A. On the design of highly linear CMOS digitally programmable operational transconductance amplifiers for low and high-frequency applications. Analog Integr Circ Sig Process 97, 225–241 (2018). https://doi.org/10.1007/s10470-018-1128-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1128-2

Keywords

Navigation