Skip to main content
Log in

Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, new analog emulator circuits of flux-controlled memristor based on current voltage differencing transconductance amplifier (VDTA) and passive elements are proposed. They emulate both types of memductance, incremental and decremental, solely by interchanging the VDTA output terminals controlled by a simple switch. It uses only one VDTA, two resistors, one capacitor and one multiplier emulating floating memductance. Compared to other designed emulator circuits, they consist of fewer CMOS transistors and have wider output ranges. Theoretical derivations and related results are validated using SPICE simulations. The effectiveness of the proposed memristor circuits is verified by experimental results using commercially available integrated circuits, showing close agreement with theoretical and simulation results and easily reproducible at a low cost. The simulation test results and use of 0.18 μm CMOS technology have shown that the maximum frequency is 2 MHz. The circuit has also been tested for non-volatility features.The application of the proposed floating memristor emulator in designing an FM-to-AM converter confirms the functionality of the proposed circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Strukov, D. B., Sneider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83. https://doi.org/10.1038/nature06932.

    Article  Google Scholar 

  2. Chua, L. O. (1971). Memristor: the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–512. https://doi.org/10.1109/tct.1971.1083337.

    Article  Google Scholar 

  3. Chua, L. O. (2011). Resistance switching memories are memristors. Applied Physics A: Materials Science & Processing, 102, 765–783. https://doi.org/10.1007/s00339-011-6264-9.

    Article  MATH  Google Scholar 

  4. Yu, D. S., Liang, Y., Chen, H., & Yu, H. H. H. (2013). Design of a practical memcapacitor emulator without grounded restriction. IEEE Transactions on Circuits and Systems II, 60(4), 207–211. https://doi.org/10.1109/TCSII.2013.2240879.

    Article  Google Scholar 

  5. Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I, 59(10), 2422–2429. https://doi.org/10.1109/TCSI.2012.2188957.

    Article  MathSciNet  Google Scholar 

  6. Yunus, B., Abdullah, Y., & Firat, K. (2017). Memristor emulator with tunable characteristic and its experimental results. AEÜ-International Journal of Electronics and Communications, 81, 99–104. https://doi.org/10.1016/j.aeue.2017.07.012.

    Article  Google Scholar 

  7. Biolek, Z., Biolek, D., & Biolkov, V. (2009). SPICE model of memristor with nonlinear dopant drift. Radioengineering, 18, 210–214.

    Google Scholar 

  8. Benderli, S., & Wey, T. A. (2009). On SPICE macromodelling of TiO2 memristors. Electronics Letters, 45, 377–379. https://doi.org/10.1049/el.2009.3511.

    Article  Google Scholar 

  9. Pershin, Y. V., & Di Ventra, M. (2013). SPICE model of memristive devices with threshold. Radioengineering, 22, 485–489. arXiv:1204.2600v5.

    Google Scholar 

  10. Varghese, D., & Gabdhi, G. (2009). Memristor based high linear range differential pair. ICCCAS. https://doi.org/10.1109/icccas.2009.5250373.

    Google Scholar 

  11. Sánchez-López, C., Mendoza-Lopez, J., Carrasco-AGuilar, M. A., & Muñiz-Montero, C. (2014). A floating analog memristor emulator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 309–313. https://doi.org/10.1109/TCSII.2014.2312806.

    Article  Google Scholar 

  12. Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2422–2431. https://doi.org/10.1109/tcsi.2012.2188957.

    Article  MathSciNet  Google Scholar 

  13. Sozen, H., & Cam, U. (2016). Electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 89(3), 655–663. https://doi.org/10.1007/s10470-016-0785-2.

    Article  Google Scholar 

  14. Yesil, A., Babacan, Y., & Kacar, F. (2014). A new DDCC based memristor emulator circuit and its applications. Microelectronics Journal, 45(3), 282–287. https://doi.org/10.1016/j.mejo.2014.01.011.

    Article  Google Scholar 

  15. Yu, D., Iu, H. H. C., Fitch, A. L., & Liang, Y. (2014). A floating memristor emulator based relaxation oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(10), 2888–2896. https://doi.org/10.1109/tcsi.2014.2333687.

    Article  Google Scholar 

  16. Yener, S., & Kuntman, H. (2012). Fully CMOS memristor based chaotic circuit. Radioengineering, 23(4), 1140–1149.

    Google Scholar 

  17. Minaei, S., Goknar, I. C., Yildiz, M., & Yuce, E. (2015). Memristor, memstance simulations via a versatile 4-port built with new adder and subtractor circuits. International Journal of Electronics, 102(6), 911–931. https://doi.org/10.1080/00207217.2014.942890.

    Article  Google Scholar 

  18. Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2013). A simple model of double-loop hysteresis behaviour in memristive elements. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(8), 487–491. https://doi.org/10.1109/TCSII.2013.2268376.

    Article  Google Scholar 

  19. Sánchez-López, C., Carrasco-Aguilar, M. A., & Muñiz-Montero, C. (2015). A 16 Hz–160 kHz memristor emulator circuit. AEU-International Journal of Electronics and Communications, 69, 1208–1219. https://doi.org/10.1016/j.aeue.2015.05.003.

    Article  Google Scholar 

  20. Sánchez-López, C., & Aguila-Cuapio, L. E. (2017). A 860 kHz grounded memristor emulator circuit. AEU-International Journal of Electronics and Communications, 73, 23–33. https://doi.org/10.1016/j.aeue.2016.12.015.

    Article  Google Scholar 

  21. Abuelma’atti, M. T., & Khalifa, Z. J. (2014). A new memristor emulator and its application in digital modulation. Analog Integrated Circuits and Signal Processing, 80(3), 577–584. https://doi.org/10.1007/s10470-014-0364-3.

    Article  Google Scholar 

  22. Abuelma’atti, M. T., & Khalifa, Z. J. (2015). A continuous-level memristor emulator and its application in a multivibrator circuit. AEU-International Journal of Electronics and Communications, 69(4), 771–775. https://doi.org/10.1016/j.aeue.2014.12.011.

    Article  Google Scholar 

  23. Alharbi, A. G., Fouda, M. E., Khalifa, Z. J., Chowdhury, M. H. (2016). Simple generic memristor emulator for voltage-controlled models. In Proceedings of 2016 IEEE 59th international midwest symposium on circuits and systems (MWSCAS), 16–19 October, Abu Dhabi, UAE, pp. 1–4. https://doi.org/10.1109/mwscas.2016.7869947.

  24. Kumngern, M. (2015).A floating memristor emulator circuit using operational transconductance amplifiers. In IEEE international conference on electron devices and solid-state circuits (EDSSC), pp. 679–682. https://doi.org/10.1109/edssc.2015.7285207.

  25. Cam, Z. G., & Sedef, H. (2017). A new floating memristance simulator circuit based on second generation current conveyor. Journal of Circuits, Systems and Computers, 26(2), 1–15. https://doi.org/10.1142/s0218126617500293.

    Article  Google Scholar 

  26. Rajeev Kumar, R., Niranjan, R., Nidhi, B., & Fabian, K. (2017). Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEÜ-International Journal of Electronics and Communications, 82, 177–190. https://doi.org/10.1016/j.aeue.2017.07.039.

    Article  Google Scholar 

  27. Umut, E. A., Shahram, M., & Mehmet, S. (2017). Memristor emulator circuits using single CBTA. AEÜ-International Journal of Electronics and Communications, 82, 109–118. https://doi.org/10.1016/j.aeue.2017.08.008.

    Article  Google Scholar 

  28. Han, B., Ning, W., Huagan, W., Zhe, S., & Bocheng, B. (2018). Bi-stability in an improved memristor-based third-order Wien-Bridge oscillator. IETE Technical Review. https://doi.org/10.1080/02564602.2017.1422395.

    Google Scholar 

  29. Yunus, B., Abdullah, Y., & Firat, K. (2017). Memristor emulator with tunable characteristic and its experimental results. AEÜ-International Journal of Electronics and Communications, 81, 99–104. https://doi.org/10.1016/j.aeue.2017.07.012.

    Article  Google Scholar 

  30. Rajeev, K. R., Nishtha, R., Ratnadeep, P., Sajal, K. P., & Gaurav, K. (2017). Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectronics Journal, 60, 119–128. https://doi.org/10.1016/j.mejo.2016.12.004.

    Article  Google Scholar 

  31. Yunus, B., & Fırat, K. (2017). Memristor emulator with spike-timing-dependent-plasticity. AEÜ-International Journal of Electronics and Communications, 73, 16–22. https://doi.org/10.1016/j.aeue.2016.12.025.

    Article  Google Scholar 

  32. Babacan, Y., & Kacar, F. (2017). Floating memristor emulator with subthreshold region. Analog Integrated Circuits and Signal Processing, 90, 471–475. https://doi.org/10.1007/s10470-016-0888-9.

    Article  Google Scholar 

  33. Abuelma’atti, M. T., & Khalifa, Z. J. (2016). A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integrated Circuits and Signal Processing, 86, 141–147. https://doi.org/10.1007/s10470-015-0660-6.

    Article  Google Scholar 

  34. Sozen, H., & Cam, U. (2016). Electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 89, 655–663. https://doi.org/10.1007/s10470-016-0785-2.

    Article  Google Scholar 

  35. Toumazou, C., Lidgey, F. J., & Haigh, D. (1990). Analog IC design: The current-mode approach. Exeter, UK: Short Run Press. https://doi.org/10.1049/PBCS002E.

    Google Scholar 

  36. Pershin, Y. V., & Ventra, M. D. (2010). Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 46(7), 517–518. https://doi.org/10.1049/el.2010.2830.

    Article  Google Scholar 

  37. Nguyen, V. H., Sohn, K. Y., & Song, H. (2016). On-printed circuit board emulator with controllability of pinched hysteresis loop for nanoscale TiO2 thin-film memristor device. Journal of Computational Electronics, 15, 993–1002. https://doi.org/10.1007/s10825-016-0862-x.

    Article  Google Scholar 

  38. Jetsdaporn, S., & Worapong, T. (2014). Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors. Microelectronics Journal, 45, 613–618. https://doi.org/10.1016/j.mejo.2014.04.008.

    Article  Google Scholar 

  39. Yesil, A., Kacar, F., & Kuntman, H. (2011). New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering, 20(3), 632–637.

    Google Scholar 

  40. Arbel, A. F., & Goldminz, L. (1992). Output stage for current-mode feedback amplifiers, theory and applications. Analog Integrated Circuits and Signal Processing, 3, 243–255. https://doi.org/10.1007/BF00276637.

    Article  Google Scholar 

  41. Boonchu, B., Surakampontorn, W. (2005). CMOS class-AB voltage-mode multiplier. In Proceedings of ISCIT2005, pp. 1489–1492. https://doi.org/10.1109/iscit.2005.1567165.

  42. Boonchu, B., Surakampton, W. (2002). Voltage-mode CMOS squarer/multiplier circuit. In The 2002 international technical conference on circuits/systems, computers and communications, pp. 646–649.

  43. Srivastava, V. M., & Singh, G. (2014). MOSFET technologies for double-pole four-throw radio-frequency switch. Analog Integrated Circuits and Signal Processing, 122, 23–43. https://doi.org/10.1007/978-3-319-01165-3_2.

    Article  Google Scholar 

  44. Alaybeyoglu, E., & Kuntman, H. (2016). CMOS implementations of VDTA based frequency agile filters for encrypted communications. Analog Integrated Circuits and Signal Processing, 89, 675–684. https://doi.org/10.1007/s10470-016-0760-y.

    Article  Google Scholar 

  45. Evaluation of measurement data. (2008). Supplement 1 to the “Guide to the expression of uncertainty in measurement”—Propagation of distributions using a Monte Carlo method, BIPM.

  46. Herencsar, N., Sotner, R., Koton, J., Misurec, J., & Vrba, K. (2013). New compact VM four-phase oscillator employing only single Z-copy VDTA and all grounded passive elements. Elektronika Ir Elektrotechnika, 19(10), 87–90. https://doi.org/10.5755/j01.eee.19.10.5900.

    Article  Google Scholar 

  47. Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprint of memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11), 3008–3021.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Education and Science of the Republic of Serbia within the Projects 42009 and OI-172057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag B. Petrović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, P.B. Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Analog Integr Circ Sig Process 96, 417–433 (2018). https://doi.org/10.1007/s10470-018-1177-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1177-6

Keywords

Navigation