Skip to main content

Advertisement

Log in

A low power, miniature temperature sensor with one-point calibrated accuracy of ± 0.25 °C from − 55 to 125 °C in 65 nm CMOS process

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An ultra-low power and area, CMOS based temperature sensor with digital interface for military application (− 55 to 125 °C) is introduced. The sensor employs a proportional to absolute temperature current generator operating in sub-threshold region, and a novel signal-conditioning circuitry. A low power and area sigma-delta analog-to-digital converter (\(\varSigma \varDelta\)-ADC) is used for temperature to digital conversion. The \(\varSigma \varDelta\)-ADC is realized using second order \(\varSigma \varDelta\) modulator, where a self-biased, gain-boosted class-C inverter is shared between two stages for low power and low area, besides achieving a resolution of 12-bits. The overall sensor is realized in 65 nm CMOS standard process and its performance is validated using post-layout simulations, considering worst case. After one-trim, the sensor achieves an accuracy of \(\pm \,0.25\,^{\circ }\)C, while having a resolution of 0.18 °C and a resolution figure of merit of 0.0058 nJK2. The sensor operates at a power supply of 1-V, consuming power of 27.8 μW and an area of 0.0033 mm2 (excluding digital filter).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Bakker, A. (2002). CMOS smart temperature sensors: An overview. Proceedings of IEEE Sensors, 2, 1423–1427.

    Article  Google Scholar 

  2. Pertijs, M. A. P., & Huijsing, J. H. (2006). Precision temperature sensors in CMOS technology. Dordrecht: Springer.

    Google Scholar 

  3. International technology roadmap for semiconductors (ITRS) (2015). Available: http://www.public.itrs.net/. Accessed on December 25, 2018.

  4. Souri, K., Chae, Y., & Makinwa, K. A. A. (2013). A CMOS temperature sensor with a voltage-calibrated inaccuracy of \(\pm\) 0.15 °C (3\(\sigma\)) from \(-55 \,^{\circ }\)C to 125 °C. IEEE Journal of Solid-State Circuits, 48(1), 292–301.

    Article  Google Scholar 

  5. Sebastiano, F., Breems, L. J., Makinwa, K. A. A., Drago, S., Leenaerts, D. M. W., & Nauta, B. (2010). A 1.2-V 10-μW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 °C (3\(\sigma\)) from \(-70 \,^{\circ }\)C to 125 °C. EEE Journal of Solid-State Circuits, 45(12), 2591–2601.

    Article  Google Scholar 

  6. Aita, L., Pertijs, M. A. P., Makinwa, K. A. A., Huijsing, J. H., & Meijer, G. C. M. (2013). Low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of \(\pm\)0.25 °C (\(\pm\)3\(\sigma\)) from \(-70 \,^{\circ }\)C to 130 °C. IEEE Sensors Journal, 13(5), 1840–1848.

    Article  Google Scholar 

  7. Bashir, M., Patri, S. R., & Prasad, K. K. (2017). A low power, frequency-to-digital converter CMOS based temperature sensor in 65 nm process. In International symposium on VLSI design and test (pp. 657–666). Singapore: Springer.

  8. Hwang, S., Koo, J., Kim, K., Lee, H., & Kim, C. (2013). A 0.008 mm2 500 μW 469 kS/s frequency-to-digital converter based CMOS temperature sensor with process variation compensation. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(9), 2241–2248.

    Article  Google Scholar 

  9. Chen, P., Chen, S. C., Shen, Y. S., & Peng, Y. J. (2011). All-digital time-domain smart temperature sensor with an inter-batch inaccuracy of \(-0.7 \,^{\circ }\)C to +0.6 °C after one-point calibration. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(5), 913–920.

    Article  MathSciNet  Google Scholar 

  10. Souri, K., & Makinwa, K. A. A. (2011). A 0.12 mm2 7.4 μW micropower temperature sensor with an inaccuracy of \(\pm\)0.2 °C (3\(\sigma\)) from −30 °C to +125 °C. IEEE Journal of Solid-State Circuits, 46(7), 1693–1700.

    Article  Google Scholar 

  11. Bashir, M., Sreehari Roa, P., & Krishna Prasad, K. S. R. (2015). On-chip CMOS temperature sensor with current calibrated accuracy of \(-1.1 \,^{\circ }\)C to +1.4 °C (3\(\sigma\)) from 20 °C to 150 °C. In 19th International symposium on VLSI design and test, Ahmedabad (pp. 1–5).

  12. Jeong, S., Foo, Z., Lee, Y., Sim, J. Y., Blaauw, D., & Sylvester, D. (2014). A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes. IEEE Journal of Solid-State Circuits, 49(8), 1682–1693.

    Article  Google Scholar 

  13. Bashir, M., Sreehari Roa, P., & Krishna Prasad, K. S. R. (2016). An ultra low power, 0.003 mm2 area, voltage to frequency based smart temperature sensor for \(-55 \,^{\circ }\)C to + 125 °C with one-point calibration. Turkish Journal of Electrical Engineering and Computer Science, 25(4), 2995–3007.

    Google Scholar 

  14. Kim, Y., & Li, P. (2013). A 0.003-mm2, 0.35-V, 82-pJ/conversion ultra-low power CMOS all digital temperature sensor for on-die thermal management. Analog Integrated Circuits and Signal Processing, 75(1), 147–156.

    Article  Google Scholar 

  15. Bashir, M., Patri, S. R., & Prasad, K. (2017). Low-power voltage to a frequency-based smart temperature sensor with + 0.8/− 0.75 °C accuracy for − 55 °C to 125 °C. Turkish Journal of Electrical Engineering and Computer Sciences, 25(6), 4880–4892.

    Article  Google Scholar 

  16. Huang, Q., Joo, H., Kim, J., Zhan, C., & Burm, J. (2017). An energy-efficient frequency-domain CMOS temperature sensor with switched vernier time-to-digital conversion. IEEE Sensors Journal, 17(10), 3001–3011.

    Article  Google Scholar 

  17. Saligane, M., Khayatzadeh, M., Zhang, Y., Jeong, S., Blaauw, D., & Sylvester, D. (2015). All-digital SoC thermal sensor using on-chip high order temperature curvature correction. In IEEE custom integrated circuits conference (CICC), San Jose, CA (pp. 1–4).

  18. Bashir, M., Sreehari, Roa P., & Krishna Prasad, K. S. R. (2017). Low-power voltage to frequency based smart temperature sensor with + 0.8/− 0.75 °C accuracy for − 55 °C to 125 °C. Turkish Journal of Electrical Engineering and Computer Sciences, 25(6), 4880–4892.

    Article  Google Scholar 

  19. Anand, T., Makinwa, K. A. A., & Hanumolu, P. K. (2016). A VCO based highly digital temperature sensor with 0.034 °C/mV supply sensitivity. IEEE Journal of Solid-State Circuits, 51(11), 2651–2663.

    Article  Google Scholar 

  20. de la Rosa, J. M. (2013). CMOS sigma-delta converters: Practical design guide. Chichester: John.

    Book  Google Scholar 

  21. Silva, J., Moon, U., Steensgaard, J., & Temes, G. C. (2001). Wideband low-distortion delta-sigma ADC topology. Electronics Letters, 37(12), 737–738.

    Article  Google Scholar 

  22. Park, H., Nam, K., Su, D. K., Vleugels, K., & Wooley, B. A. (2009). A 0.7-V 870-μW digital-audio CMOS sigma delta modulator. IEEE Journal of Solid-State Circuits, 44(4), 1078–1088.

    Article  Google Scholar 

  23. Peluso, V., Steyaert, M. S. J., & Sansen, W. (1997). A 1.5-V 100-μW modulator with 12-b dynamic range using the switched-opamp technique. IEEE Journal of Solid-State Circuits, 32(7), 943–952.

    Article  Google Scholar 

  24. Zanbaghi, R., Saxena, S., Temes, G. C., & Fiez, T. S. (2012). A 75-dB SNDR, 5-MHz bandwidth stage-shared 2–2 MASH \(\Sigma \Delta\) modulator dissipating 16 mW power. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(8), 1614–1625.

    Article  MathSciNet  Google Scholar 

  25. Chae, Y., & Han, G. (2009). Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE Journal of Solid-State Circuits, 44(2), 458–472.

    Article  Google Scholar 

  26. Burmas, T. V., Dyer, K. C., Hurst, P. J., & Lewis, S. H. (1996). A second-order double-sampled delta-sigma modulator using additive-error switching. IEEE Journal of Solid-State Circuits, 31(3), 284–293.

    Article  Google Scholar 

  27. Musah, T., Kwon, S., Lakdawala, H., Soumyanath, K., & Moon, U. K. (2009). A 630 μW zero-crossing-based \(\Sigma \Delta\) ADC using switched-resistor current sources in 45 nm CMOS. In Proceedings of IEEE custom integrated circuits conference (pp. 1–4).

  28. Bazes, M. (1991). Two novel fully complementary self-biased CMOS differential amplifiers. IEEE Journal of Solid-State Circuits, 26(2), 165–168.

    Article  Google Scholar 

  29. Johns, D. A., & Martin, K. (2008). Analog integrated circuit design. New York: Wiley.

    MATH  Google Scholar 

  30. Bashir, M., Sreehari Roa, P., & Krishna Prasad, K. S. R. (2016). MATLAB/SIMULINK based time-domain behavioral modeling of sigma-delta converters. In International conference on computational techniques in information and communication technologies (ICCTICT), New Delhi (pp. 132–136).

  31. Yeo, J., Choi, Y., Jeongjin, R., Han, G., et al. (2014). A current regulator for inverter-based massively column-parallel \(\Delta \Sigma\) ADCs. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(4), 224–228.

    Article  Google Scholar 

  32. Chae, Y., Cheon, J., Lim, S., Kwon, M., Yoo, K., et al. (2011). A 2.1 M pixels, 120 frame/s CMOS image sensor with column-parallel \(\Delta \Sigma\) ADC architecture. IEEE Journal of Solid-State Circuits, 46(1), 236–247.

    Article  Google Scholar 

  33. Goll, B., & Zimmermann, H. (2015). Comparators in nano CMOS technology. New York: Springer.

    Google Scholar 

  34. Meijer, G. C. M., Wang, G., & Fruett, F. (2001). Temperature sensors and voltage references implemented in CMOS technology. IEEE Sensors Journal, 1(3), 225–234.

    Article  Google Scholar 

  35. Makinwa, K. A. A. (2017). Temperature sensor performance survey. Available: http://www.ei.ewi.tudelft.nl/docs/TSensor-survey.xls. Accessed on December 22, 2017.

Download references

Acknowledgements

This work has been performed using the resources of Mixed Signal Laboratory developed at Department of Electronics and Communication Engineering, National Institute of Technology Warangal, Telangana under Special Manpower Development Program for VLSI design and related software (SMDP-II) Project funded by Department of Information Technology, Ministry of Communication and Information Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudasir Bashir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, M., Sreehari Rao, P. A low power, miniature temperature sensor with one-point calibrated accuracy of ± 0.25 °C from − 55 to 125 °C in 65 nm CMOS process. Analog Integr Circ Sig Process 99, 311–323 (2019). https://doi.org/10.1007/s10470-018-1278-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1278-2

Keywords

Navigation