Skip to main content
Log in

An imperceptible, robust, and high payload capacity audio watermarking scheme based on the DCT transformation and Schur decomposition

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel audio watermarking scheme based on the discrete cosine transform (DCT) and Schur decomposition. The proposed scheme uses the DCT transformation to increase robustness and the Schur decomposition to achieve perceptual transparency. The proposed scheme first applies the DCT transformation to the original audio signal and then applies the Schur decomposition to the mid-frequency band of the DCT coefficients that generate two matrices (U and S). The watermark bits are embedded into the diagonal elements of the triangular matrix S. The Schur decomposition increases the perceptual transparency and the DCT transformation increases robustness of the proposed audio watermarking scheme by effectively resisting several types of audio signal attacks. The imperceptibility of the proposed watermarking scheme is measured subjectively using subjective difference grades (SDG) and objectively using signal-to-noise ratio (SNR) and objective difference grades (ODG) metrics. Its robustness is evaluated against several types of attacks in terms of NC and BER for different types of audio. The resulting of payload capacity, SNR, NC, and BER are as high as 516.26 bps, 77.95, 0.05326, and 0.9727, respectively. Experimental results confirm the proposed scheme is efficient, imperceptible, and robust with a high payload capacity and no effecting audio signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu, H. T., Hsu, L. Y., & Chou, H. H. (2014). Perceptual-based DWPT–DCT framework for selective blind audio watermarking. Signal Processing, 105, 316–627. https://doi.org/10.1016/j.sigpro.2014.05.003.

    Article  Google Scholar 

  2. Peng, H., Li, B., Luo, X., Wang, J., & Zhang, Z. (2013). A learning-based audio watermarking scheme using kernel Fisher discriminant analysis. Digital Signal Processing, 23(1), 382–389. https://doi.org/10.1016/j.dsp.2012.08.006.

    Article  MathSciNet  Google Scholar 

  3. Hu, H. T., & Hsu, L. Y. (2015). Robust, transparent and high-capacity audio watermarking in DCT domain. Signal Processing, 109, 226–235. https://doi.org/10.1016/j.sigpro.2014.11.011.

    Article  Google Scholar 

  4. Liu, J., & She, K. (2012). A hybrid approach of DWT and DCT for rational dither modulation watermarking. Circuits Systems and Signal Processing, 31(2), 797–811. https://doi.org/10.1007/s00034-011-9331-8.

    Article  MathSciNet  Google Scholar 

  5. Tsai, H.-H., Cheng, J.-S., & Yu, P.-T. (2003). Audio watermarking based on HAS and neural networks in DCT domain. EURASIP Journal on Advances in Signal Processing, 2003(3), 252–263. https://doi.org/10.1155/S1110865703208027.

    Article  Google Scholar 

  6. Dhar, P. K., & Shimamura, T. (2017). Blind audio watermarking in transform domain based on singular value decomposition and exponential-log operations. Radioengineering, 26(2), 552–561. https://doi.org/10.13164/re.2017.0552.

    Article  Google Scholar 

  7. Hu, H. T., Chang, J. R., & Lin, S. J. (2018). Synchronous blind audio watermarking via shape configuration of sorted LWT coefficient magnitudes. Signal Processing, 147, 190–202. https://doi.org/10.1016/j.sigpro.2018.02.001.

    Article  Google Scholar 

  8. Tewari, T. K., Saxena, V., & Gupta, J. P. (2014). A digital audio watermarking scheme using selective mid band DCT coefficients and energy threshold. International Journal of Speech Technology, 17(4), 365–371. https://doi.org/10.1007/s10772-014-9234-8.

    Article  Google Scholar 

  9. Al-Haj, A. (2014). An imperceptible and robust audio watermarking algorithm. EURASIP Journal on Audio, Speech, and Music Processing, 2014(37), 1–12. https://doi.org/10.1186/s13636-014-0037-2.

    Article  Google Scholar 

  10. Qasim, A. F., Meziane, F., & Aspin, R. (2018). Digital watermarking: Applicability for developing trust in medical imaging workflows state of the art review. Computer Science Review, 27, 45–60. https://doi.org/10.1016/j.cosrev.2017.11.003.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bassia, P., Pitas, I., & Nikolaidis, N. (2001). Robust audio watermarking in the time domain. IEEE Transactions on Multimedia, 3(2), 232–241.

    Article  Google Scholar 

  12. Xiang, S., & Huang, J. (2007). Histogram-based audio watermarking against time-scale modification and cropping attacks. IEEE Transactions on Multimedia, 9(7), 1357–1372.

    Article  Google Scholar 

  13. Lie, W.-N., & Chang, L.-C. (2006). Robust and high-quality time-domain audio watermarking based on low-frequency amplitude modification. IEEE Transactions on Multimedia, 8(1), 46–59.

    Article  Google Scholar 

  14. Wang, H., Nishimura, R., Suzuki, Y., & Mao, L. (2008). Fuzzy self-adaptive digital audio watermarking based on time-spread echo hidinge. Applied Acoustics, 69(10), 868–874.

    Article  Google Scholar 

  15. Aparna, J. R., & Ayyappan, S. (2014). Comparison of digital watermarking techniques department of computer science. In 2014 International conference on computation of power, energy, information and communication (ICCPEIC) (pp. 87–92). Chennai.

  16. Singh, P., & Chadha, R. (2013). A survey of digital watermarking techniques, applications and attacks. International Journal of Engineering and Innovative Technology (IJEIT), 2(9), 165–175. https://doi.org/10.1109/INDIN.2005.1560462.

    Article  Google Scholar 

  17. Kavadia, C., & Lodha, A. (2013). A review on spatial & transform domain digital watermarking techniques. International Journal of Advanced Research in Computer Science, 4(3), 20–22.

    Google Scholar 

  18. Rajab, L., Al-khatib, T., & Al-haj, A. (2015). A blind DWT–Schur based digital video watermarking technique. Journal of Software Engineering and Applications, 8(1), 224–233.

    Article  Google Scholar 

  19. Hu, H. T., & Hsu, L. Y. (2017). Incorporating spectral shaping filtering into DWT-based vector modulation to improve blind audio watermarking. Wireless Personal Communications, 94(2), 221–240. https://doi.org/10.1007/s11277-016-3178-z.

    Article  Google Scholar 

  20. Lei, B., Soon, I. Y., & Tan, E. L. (2013). Robust SVD-based audio watermarking scheme with differential evolution optimization. IEEE Transactions on Audio, Speech and Language Processing, 21(11), 2368–2378. https://doi.org/10.1109/TASL.2013.2277929.

    Article  Google Scholar 

  21. Yoosuf, S., & Alex, A. M. (2015). Audio watermarking using colour image based on EMD and DCT. International Journal of Advanced Research in Computer and Communication Engineering, 4(6), 363–367. https://doi.org/10.17148/IJARCCE.2015.4679.

    Article  Google Scholar 

  22. Maha, C., Maher, E., Mohamed, K., & Chokri, B. A. (2010). DCT based blind audio watermarking scheme. In 2010 International conference on signal processing and multimedia applications (SIGMAP) (pp. 139–144). Athens, Greece.

  23. Roy, S., Sarkar, N., Chowdhury, A. K., & Iqbal, S. M. A. (2015). An efficient and blind audio watermarking technique in DCT domain. In 2015 18th international conference on computer and information technology, ICCIT (pp. 362–367). Dhaka. https://doi.org/10.1109/iccitechn.2015.7488097.

  24. Charfeddine, M., El’Arbi, M., & Amar, C. B. (2014). A new DCT audio watermarking scheme based on preliminary MP3 study. Multimedia Tools and Applications, 70(3), 1521–1557. https://doi.org/10.1007/s11042-012-1167-0.

    Article  Google Scholar 

  25. Li, W., Xue, X., & Lu, P. (2006). Localized audio watermarking technique robust modification, against time-scale. IEEE Transactions on Multimedia, 2(1), 60–69.

    Article  Google Scholar 

  26. Tachibana, R., Shimizu, S., Kobayashi, S., & Nakamura, T. (2002). An audio watermarking method using a two-dimensional pseudo-random array. Signal Process, 82(10), 1455–1469.

    Article  MATH  Google Scholar 

  27. Wang, X.-Y., Niu, P.-P., & Yang, H.-Y. (2009). A robust digital audio watermarking based on statistics characteristics. Pattern Recognition, 42(11), 3057–3064.

    Article  MATH  Google Scholar 

  28. Wu, S., Huang, J., Huang, D., & Shi, Y. Q. (2005). Efficiently self-synchronized audio watermarking for assured audio data transmission. IEEE Transactions on Broadcasting, 51(1), 69–76.

    Article  Google Scholar 

  29. Wang, X., Wang, P., Zhang, P., Xu, S., & Yang, H. (2013). Norm-space, aadaptive, and blind audio watermarking algorithm by discrete wavelet transform. Signal Processing, 93(4), 913–922.

    Article  Google Scholar 

  30. Dhar, P. K., & Shimamura, T. (2015). Blind SVD-based audio watermarking using entropy and log-polar transformation. Journal of Information Security and Applications, 20, 74–83. https://doi.org/10.1016/j.jisa.2014.10.007.

    Article  Google Scholar 

  31. Bhat, V., Sengupta, K. I., & Das, A. (2010). An adaptive audio watermarking based on the singular value decomposition in the wavelet domain. Digital Signal Processing, 20(6), 1547–1558.

    Article  Google Scholar 

  32. Lei, B., Soon, I. Y., Zhou, F., Li, Z., & Lei, H. (2012). A robust audio watermarking scheme based on lifting wavelet transform and singular value decomposition. Signal Processing, 92(9), 1985–2001.

    Article  Google Scholar 

  33. Bansal, N., Bansal, A., Deolia, V., & Pathak, P. (2015). Comparative Analysis of LSB, DCT and DWT for Digital Watermarking. In 2nd international conference on computing for sustainable global development (INDIACom) (pp. 40–45). Mathura, India. https://doi.org/10.1109/eesco.2015.7253657.

  34. Hu, H. T., & Hsu, L. Y. (2017). Supplementary schemes to enhance the performance of DWT-RDM-based blind audio watermarking. Circuits, Systems, and Signal Processing, 36(5), 1890–1911. https://doi.org/10.1007/s00034-016-0383-7.

    Article  Google Scholar 

  35. Singh, D., & Singh, S. K. (2017). DWT-SVD and DCT based robust and blind watermarking scheme for copyright protection. Multimedia Tools and Applications, 76(11), 13001–13024. https://doi.org/10.1007/s11042-016-3706-6.

    Article  Google Scholar 

  36. Roy, S., & Pal, A. K. (2017). A robust blind hybrid image watermarking scheme in RDWT–DCT domain using Arnold scrambling. Multimedia Tools and Applications, 76(3), 3577–3616. https://doi.org/10.1007/s11042-016-3902-4.

    Article  Google Scholar 

  37. Abd El-Samie, F. E. (2009). An efficient singular value decomposition algorithm for digital audio watermarking. International Journal of Speech Technology, 12(1), 27–45. https://doi.org/10.1007/s10772-009-9056-2.

    Article  Google Scholar 

  38. Hu, H. T., & Chang, J. R. (2017). Efficient and robust frame-synchronized blind audio watermarking by featuring multilevel DWT and DCT. Cluster Computing, 20(1), 805–816. https://doi.org/10.1007/s10586-017-0770-2.

    Article  Google Scholar 

  39. Šego, V. (2014). The hyperbolic Schur decomposition. Linear Algebra and its Applications, 440(1), 90–110. https://doi.org/10.1016/j.laa.2013.10.037.

    Article  MathSciNet  MATH  Google Scholar 

  40. Mohammad, A. A. (2012). A new digital image watermarking scheme based on Schur decomposition. Multimedia Tools and Applications, 59(3), 851–883. https://doi.org/10.1007/s11042-011-0772-7.

    Article  Google Scholar 

  41. Su, Q., Niu, Y., Liu, X., & Zhu, Y. (2012). Embedding color watermarks in color images based on Schur decomposition. Optics Communications, 285(7), 1792–1802. https://doi.org/10.1016/j.optcom.2011.12.065.

    Article  Google Scholar 

  42. Looperman Pro Audio Resources Community Forums, https://www.looperman.com. Accessed date: 15 July, 2017. (n.d.).

  43. Kabal, P. (2003). An examination and interpretation of ITU-R BS. 1387: Perceptual evaluation of audio quality. Montreal: McGill University.

    Google Scholar 

  44. Subir, & Joshi, A. M. (2016). DWT-DCT based blind audio watermarking using Arnold scrambling and Cyclic codes. In 3rd international conference on signal processing and integrated networks (SPIN) (pp. 79–84). Noida. https://doi.org/10.1109/spin.2016.7566666.

  45. Hsu, L. Y., & Hu, H. T. (2015). Blind image watermarking via exploitation of inter-block prediction and visibility threshold in DCT domain. Journal of Visual Communication and Image Representation, 32, 130–143. https://doi.org/10.1016/j.jvcir.2015.07.017.

    Article  Google Scholar 

  46. Hu, H. T., Chen, S. H., & Hsu, L. Y. (2014). Incorporation of perceptually energy-compensated qim into dwt-dct based blind audio watermarking. In Proceedings2014 10th international conference on intelligent information hiding and multimedia signal processing (pp. 748–752). Kitakyushu, Japan. https://doi.org/10.1109/iih-msp.2014.191.

  47. Dong, L., Yan, Q., Lv, Y., & Deng, S. (2017). Full band watermarking in DCT domain with Weibull model. Multimedia Tools and Applications, 76(2), 1983–2000. https://doi.org/10.1007/s11042-015-3115-2.

    Article  Google Scholar 

  48. Yang, Y., Lei, M., Liu, X., Qu, Z., & Wang, C. (2016). Novel zero-watermarking scheme based on DWT–DCT. China Communications, 13(7), 122–126.

    Article  Google Scholar 

  49. Pattanshetti, P., Dongaonkar, S., & Karpe, S. (2015). Digital watermarking in audio using least significant bit and discrete cosine transform. International Journal of Computer Science and Information Technologies (IJCSIT), 6(4), 3688–3692.

    Google Scholar 

  50. Kaur, N., & Kaur, U. (2013). Audio watermarking using arnold transformation with DWT-DCT. International Journal of Computer Science Engineering (IJCSE), 2(6), 286–294.

    Google Scholar 

  51. Zhang, J. (2015). Audio dual watermarking scheme for copyright protection and content authentication. International Journal of Speech Technology, 18(3), 443–448. https://doi.org/10.1007/s10772-015-9287-3.

    Article  Google Scholar 

  52. Deokar, S. M., & Dhaigude, B. (2015). Blind audio watermarking based on discrete wavelet and cosine transform. In 2015 international conference on industrial instrumentation and control (ICIC) (pp. 264–268). Pune. https://doi.org/10.1109/iic.2015.7150750.

  53. Dutta, M. K., Gupta, P., & Pathak, V. K. (2014). A perceptible watermarking algorithm for audio signals. Multimedia Tools and Applications, 73(2), 691–713. https://doi.org/10.1007/s11042-011-0945-4.

    Article  Google Scholar 

  54. Deb, K., Rahman, M. A., Sultana, K. Z., Sarker, M. I. H., & Chong, U.-P. (2014). DCT and DWT based robust audio watermarking scheme for copyright protection. The Journal of Korea Institute of Signal Processing and Systems, 15(1), 1–9.

    Google Scholar 

  55. Milaš, I., Radović, B., & Janković, D. (2016). A new audio watermarking method with optimal detection. In 5th Mediterranean conference on embedded computing (pp. 116–119). Bar. https://doi.org/10.1109/meco.2016.7525717.

  56. Al-Haj, A. (2014). A dual transform audio watermarking algorithm. Multimedia Tools and Applications, 73(3), 1897–1912. https://doi.org/10.1007/s11042-013-1645-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Maqableh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karajeh, H., Maqableh, M. An imperceptible, robust, and high payload capacity audio watermarking scheme based on the DCT transformation and Schur decomposition. Analog Integr Circ Sig Process 99, 571–583 (2019). https://doi.org/10.1007/s10470-018-1332-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1332-0

Keywords

Navigation