Skip to main content
Log in

A 0.9-V supply, 16.2 nW, fully MOSFET resistorless bandgap reference using sub-threshold operation

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A nano-watt bandgap voltage reference (BGR) is presented. To provide a low-voltage and low-power BGR, the circuit has been biased in the sub-threshold region; thereby, drawing a few nano-amperes current from the source, has been achieved. In order to reduce die area and also power consumption, instead of resistor, transistor is used. To generate PTAT voltage, self-cascode composite structure is used for the transistors. The results from post-layout simulation using 0.18-μm standard CMOS technology show that the proposed BGR circuit generates a reference voltage of 625 mV, obtaining temperature coefficient of 13 ppm/ °C in the temperature range of − 25 °C to 110 °C. The simulated power supply rejection ratio is 42 dB. Fully designed with MOS transistors, the circuit draws 18 nA from a 0.9-V supply. The active area of the proposed BGR is 0.00067 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Osaki, Y., Hirose, T., Kuroki, N., & Numa, M. (2013). 1.2-V supply, 100-nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V subbandgap reference circuits for nanowatt CMOS LSIs. IEEE Journal of Solid-State Circuits,48, 1530–1538.

    Article  Google Scholar 

  2. Razavi, B. (2000). Design of analog CMOS integrated circuit (1st ed.). New York: McGraw-Hill.

    Google Scholar 

  3. Sansen, W. M. C. (2007). Analog design essentials (Vol. 859). Berlin: Springer.

    Google Scholar 

  4. De Vita, G., & Iannaccone, G. (2007). A sub-1-V, 10 ppm/°C, nanopower voltage reference generator. IEEE Journal of Solid-State Circuits,42, 1536–1542.

    Article  Google Scholar 

  5. Magnelli, L., Crupi, F., Corsonello, P., Pace, C., & Iannaccone, G. (2011). A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE Journal of Solid-State Circuits,46, 465–474.

    Article  Google Scholar 

  6. Mattia, O. E., Klimach, H., Bampi, S. (2014). 0.9 V, 5 nW, 9 ppm/°C resistorless sub-bandgap voltage reference in 0.18 μm CMOS. In IEEE 5th Latin American Symp. Circuits and Syst. (LASCAS) (pp. 1–4); 2014 Feb 25–28; Santigo, Chile. New York: IEEE; c2014.

  7. Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., et al. (1999). A CMOS bandgap reference circuit with sub-1-V operation. IEEE Journal of Solid-State Circuits,46, 670–674.

    Article  Google Scholar 

  8. Colombo, D., Werle, F., Wirth, G., Bampi, S. (2012). A CMOS 25.3 ppm/C bandgap voltage reference using self-cascode composite transistor. In IEEE 3rd Latin American Symp. Circuits and Syst. (LASCAS) (pp. 1–4); 2012 Feb 29-Mar 2; Iberostar, Quetzal. New York: IEEE; c2012.

  9. Guoyi, Y., & Xuecheng, Z. (2008). A novel current reference based on subthreshold MOSFETs with high PSRR. Microelectronics Journal,39, 1874–1879.

    Article  Google Scholar 

  10. Rajput, S. S., & Jamuar, S. S. (2002). Low voltage analog circuit design techniques. IEEE Circuits and Systems Magazine,2, 24–42.

    Article  Google Scholar 

  11. Filanovsky, I. M., & Allam, A. (2001). Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,48, 876–884.

    Article  Google Scholar 

  12. Vittoz, E., & Neyroud, O. (1979). A low-voltage CMOS bandgap reference. IEEE Journal of Solid-State Circuits,14, 573–579.

    Article  Google Scholar 

  13. Wang, A., Calhoun, B. H., & Chandrakasan, A. P. (2006). Sub-threshold design for ultra low-power systems. Berlin: Springer.

    Google Scholar 

  14. Hirose, T., Ueno, K., Kuroki, N., Numa, M. (2010). A CMOS bandgap and sub-bandgap voltage reference circuits for nanowatt power LSIs. In IEEE Asian Solid State Circuits Conf. (A-SSCC) (pp. 1–4); 2010 Nov 8–10; Beijing, China. New York: IEEE; c2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Fakharyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakharyan, I., Ehsanian, M. & Hayati, H. A 0.9-V supply, 16.2 nW, fully MOSFET resistorless bandgap reference using sub-threshold operation. Analog Integr Circ Sig Process 103, 367–374 (2020). https://doi.org/10.1007/s10470-019-01521-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01521-y

Keywords

Navigation