Skip to main content
Log in

R-peak detection based chaos analysis of ECG signal

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Electrocardiography (ECG) is a non-invasive test that is used for recording contraction and relaxation activities of the heart by using an electrocardiogram. Early detection of abnormalities of the heart through ECG is essential for reducing the prevalence of casualties due to cardiac arrests worldwide. In this study, physioNet ECG records have been considered for analysis. During recording, ECG signal is also affected by various noises, where analog filters fail due to the effect of temperature and drift, and digital filters fail due to inappropriate selection of passband and gain parameters. For adequate and frequent usage in the medical field, it demands correct and precise R-peak (QRS-complex) detection; which requires an appropriate combination of pre-processing, feature extraction and detection techniques. Therefore, independent component analysis (ICA) is used in the pre-processing stage due to nonlinear nature of the ECG signals and chaos analysis is applied for feature extraction for different ECG databases. The ICA method separates an individual signal from mixed signals by assuming that the original underlying source signals are mutually independently distributed. Chaos analysis examines the irregular attitude of the system and fits it into deterministic equations of motion. Chaos analysis is implemented by plotting different attractors against various time delay dimensions. R-peak detection is well known to be useful in diagnosing cardiac diseases. The R-peaks are detected using principal component analysis (PCA) which outperforms the existing state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luz, E. J. S., Schwartz, W. R., Chávez, G. C., & Menotti, D. (2016). ECG-based heartbeat classification for arrhythmia detection: A survey. Computer Methods and Programs in Biomedicine,127, 144–164.

    Article  Google Scholar 

  2. Vandeput, S.(2010). Heart rate variability: Linear and nonlinear analysis with applications in human physiology. Doctor in Engineering Sciences, Katholieke Universiteit, Leuven, Belgium.

  3. Rajankar, S. O., & Talbar, S. N. (2017). Adaptive vector K-tree partitioning an entropy coder: Application to ECG compression. International Journal of Telemedicine and Clinical Practices Inderscience,2(3), 215–224.

    Article  Google Scholar 

  4. Gupta, V., & Mittal, M. (2018). KNN and PCA classifier with autoregressive modelling during different ECG signal interpretation. Procedia Computer Science,125, 18–24.

    Article  Google Scholar 

  5. Rajankar, S. O., & Talbar, S. N. (2019). An electrocardiogram signal compression techniques: a comprehensive review. Analog Integrated Circuits and Signal Processing,98(1), 59–74.

    Article  Google Scholar 

  6. Gupta, V., & Mittal, M. (2018). Electrocardiogram signals interpretation using Chaos Theory. Journal of Advanced Research in Dynamical and Control Systems,9, 2392–2397.

    Google Scholar 

  7. Gorgels, A. P. M., Willerson, J. T., Wellens, H. J. J., Cohn, J. N., & Holmes, D. R. (2007). Cardiovascular medicine. London: Springer.

    Google Scholar 

  8. Kaya, Y., & Pehlivan, H. (2015). Comparison of classification algorithms in classification of ECG beats by time series. In 2015 IEEE conference on signal processing and communications applications (SIU) (pp. 407–410).

  9. Perlman, O., Katz, A., Weissman, N., Amit, G., & Zigel, Y. (2014). Atrial electrical activity detection using linear combination of 12-lead ECG signals. IEEE Transactions on Biomedical Engineering,61, 1034–1043.

    Article  Google Scholar 

  10. Javadi, M., Arani, S. A. A. A. A., Sajedin, A., & Ebrahimpour, R. (2013). Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomedical Signal Processing and Control,8, 289–296.

    Article  Google Scholar 

  11. Liu, X., Yang, J., Zhu, X., Zhou, S., Wang, H., & Zhang, H. (2014). A novel R-peak detection method combining energy and wavelet transform in electrocardiogram signal. Biomedical Engineering: Applications, Basis and Communications,26, 1–9.

    Google Scholar 

  12. Kaya, Y., Pehlivan, H., & Tenekeci, M. E. (2017). Effective ECG beat classification using higher order statistic features and genetic feature selection. The Journal of Biological Research,28, 7594–7603.

    Google Scholar 

  13. Klingspor, M. (2015). Hilbert transform: Mathematical theory and applications to signal processing. Linkoping: Linkopings University.

    Google Scholar 

  14. Yeh, Y. C., Wang, W. J., & Chiou, C. W. (2009). Cardiac arrhythmia diagnosis method using LDA on ECG signals. Measurement,42, 778–789.

    Article  Google Scholar 

  15. Andreao, R. V., Dorizzi, B., & Boudy, J. (2006). ECG signal analysis through hidden Markov models. IEEE Transactions on Biomedical Engineering,53, 1541–1549.

    Article  Google Scholar 

  16. Malek, A., Katariya, S., Chow, Y., & Ghavamzadeh, M. (2017). Sequential multiple hypothesis testing with type i error control. In Proceedings of the 20th international conference on artificial intelligence and statistics, USA (pp. 1468–1476).

  17. Li, Y., Yan, H., Hong, F., & Song, J. (2012). A new approach of QRS complex detection based on matched filtering and triangle character analysis. Australasian Physical & Engineering Sciences in Medicine,35, 341–356.

    Article  Google Scholar 

  18. Zidelmal, Z., Amirou, A., Adnane, M., & Belouchrani, A. (2012). QRS detection based on wavelet coefficients. Computer Methods and Programs in Biomedicine,107, 490–496.

    Article  Google Scholar 

  19. He, R., Wang, K., Li, Q., Yuan, Y., Zhao, N., Liu, Y., et al. (2017). A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization. EURASIP Journal on Advances in Signal Processing,82, 1–14.

    Google Scholar 

  20. Acharya, U. R., Fujita, H., Lih, O. S., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Information Sciences,405, 81–90.

    Article  Google Scholar 

  21. Rahhal, M. M. A., Bazi, Y., AlHichri, H., Alajlan, N., Melgani, F., & Yager, R. R. (2016). Deep learning approach for active classification of electrocardiogram signals. Information Sciences,345, 340–354.

    Article  Google Scholar 

  22. Ahmadian, A., Karimifard, S., Sadoughi, H., & Abdoli, M. (2007). An efficient piecewise modeling of ECG signals based on hermitian basis functions. In IEEE 2007 engineering in medicine and biology society, Lyon, France (pp. 3180–3183).

  23. Kaya, Y., & Pehlivan, H. (2015). Classification of premature ventricular contraction in ECG. International Journal of Advanced Computer Science and Applications,6, 34–40.

    Article  Google Scholar 

  24. Rao, K. D. (1997). DWT Based Detection of R-peaks and Data Compression of ECG Signals. IETE Journal of Research,43, 345–349.

    Article  Google Scholar 

  25. Kaur, H., & Rajni, R. (2017). Electrocardiogram signal analysis for R-peak detection and denoising with hybrid linearization and principal component analysis. Turkish Journal of Electrical Engineering & Computer Sciences,25, 2163–2175.

    Article  Google Scholar 

  26. Sahambi, J., Tandon, S., & Bhatt, R. (1997). Using wavelet transforms for ECG characterization. IEEE Engineering in Medicine and Biology Magazine,16, 77–83.

    Article  Google Scholar 

  27. Hongyan, X., & Minsong, H. (2008). A new qrs detection algorithm based on empirical mode decomposition. In IEEE 2008 2nd international conference ICBBE, Shanghai, China (pp. 693–696).

  28. Aurobinda, A., Mohanty, B.P., & Mohanty, M.N. (2016). R-peak Detection of ECG using Adaptive Thresholding. In IEEE 2016 international conference on communication and signal processing, Madras, India (pp. 0284–0287).

  29. Jaafar, H., Ramli, N.H., & Nasir, A.S.A. (2018). An improvement to The k-nearest neighbor classifier for ECG database. In IOP conference on series: materials science and engineering, Penang, Malaysia (pp. 1–10).

  30. Pahim, O., & Sornmo, L. (1984). Software QRS detection in ambulatory monitoring-a review. Medical and Biological Engineering and Computing,22, 289–297.

    Article  Google Scholar 

  31. Saini, I., Singh, D., & Khosla, A. (2013). QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases. Journal of Advanced Research,4, 331–344.

    Article  Google Scholar 

  32. Petricek, M. (2010). Components in data analysis. In WDS’10 proceedings of contributed papers, 0104 June 2010; Prague, Bohemia: Matfyzpress (pp. 82–87).

  33. Kuzilek, J., Kremen, V., & SoucekF, Lhotska L. (2014). Independent component analysis and decision trees for ECG holter recording de-noising. Plos One,9, 1–9.

    Article  Google Scholar 

  34. Sayadi, O., & Shamsollahi, M. B. (2007). Multiadaptive bionic wavelet transform: application to ECG denoising and baseline wandering reduction. Journal on Advances in Signal Processing,14, 1–11.

    MATH  Google Scholar 

  35. Rekik, S., & Ellouze, N. (2017). Enhanced and optimal algorithm for QRS detection. IRBM,38(1), 56–61.

    Article  Google Scholar 

  36. Gupta, V., & Mittal, M. (2019). QRS complex detection Using STFT, chaos analysis, and PCA in standard and real-time ECG databases. Inst: Journal of The Institution of Engineers (India): Series B. https://doi.org/10.1007/s40031-019-00398-9.

    Book  Google Scholar 

  37. Casdagli, M. (1992). Chaos and deterministic versus stochastic nonlinear modeling. Journal of the Royal Statistical Society: Series B (Methodological),54, 303–328.

    MathSciNet  Google Scholar 

  38. Nguomkam Negou, A., & Kengne, J. (2019). A minimal three-term chaotic flow with coexisting routes to chaos, multiple solutions, and its analog circuit realization. Analog Integrated Circuits and Signal Processing. https://doi.org/10.1007/s10470-019-01436-8.

    Article  Google Scholar 

  39. Nguomkam Negou, A., & Kengne, J. (2018). Dynamic analysis of a unique jerk system with a smoothly adjustable symmetry and nonlinearity: Reversals of period doubling, offset boosting and coexisting bifurcations. International Journal of Electronics and Communications,90, 1–19.

    Article  Google Scholar 

  40. Xingyuan, W., & Juan, M. (2009). Wavelet-based hybrid ECG compression technique. Analog Integrated Circuits and Signal Processing,59(3), 301–308.

    Article  Google Scholar 

  41. Mehta, S. S., Shete, D. A., Lingayat, N. S., & Chouhan, V. S. (2010). K-means algorithm for the detection and delineation of QRS-complexes in electrocardiogram. IRBM,31(1), 48–54.

    Article  Google Scholar 

  42. Kutlu, Y., & Kuntalp, D. (2012). Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Computer Methods and Programs in Biomedicine,105, 257–267.

    Article  Google Scholar 

  43. Dokur, Z., & Ölmez, T. (2001). ECG beat classification by a novel hybrid neural network. Computer methods and programs in Biomedicine,66, 167–181.

    Article  Google Scholar 

  44. Stone, J. V. (2004). Independent component analysis: A tutorial introduction. Cambridge: Bradford Books, The MIT Press.

    Book  Google Scholar 

  45. Naik, G. R., & Kumar, D. K. (2011). An overview of independent component analysis and its applications. Informatica,35, 63–81.

    MATH  Google Scholar 

  46. Lai, Q., Tsafack, N., Kengne, J., & Zhao, X. W. (2018). Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria. Chaos, Solitons & Fractals,107, 92–102.

    Article  MathSciNet  MATH  Google Scholar 

  47. Lai, Q., & Chen, S. (2016). Coexisting attractors generated from a new 4D smooth chaotic system. International Journal of Control, Automation and Systems,14(4), 1124–1131.

    Article  Google Scholar 

  48. Akgul, A., Calgan, H., Koyuncu, I., Pehlivan, I., & Istanbullu, A. (2015). Chaos-based engineering applications with a 3D chaotic system without equilibrium points. Nonlinear Dynamics,1, 1. https://doi.org/10.1007/s11071-015-2501-7.

    Article  Google Scholar 

  49. Acharya, R., Kumar, A., Bhat, P. S., Lim, C. M., Lyengar, S. S., Kannathal, N., et al. (2004). Classification of cardiac abnormalities using heart rate signals. Medical and Biological Engineering and Computing,42, 288–293.

    Article  Google Scholar 

  50. Eckman, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhsics Letters,4, 973–977.

    Article  Google Scholar 

  51. Skiadas, C. H., & Skiadas, C. (2016). Handbook of applications of chaos theory (1st ed.). New York: Taylor & Francis, CRC Press.

    MATH  Google Scholar 

  52. Abarbanel, H. D. I. (1996). Analysis of Observed Chaotic Data (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  53. Bradley, E., & Kantz, H. (2015). Nonlinear time-series analysis revisited. Journal of Chaos,25, 09761001–09761010.

    MathSciNet  MATH  Google Scholar 

  54. Kaplan, D. T., & Glass, L. (1992). Direct test for determinism in a time series. Physical Review Letters,68, 427–430.

    Article  Google Scholar 

  55. Briggs, K. (1987). Simple experiments in chaotic dynamics. American Journal of Physics,55, 1083–1089.

    Article  Google Scholar 

  56. Alickovic, E., & Subasi, A. (2015). Effect of Multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases. Circuits, Systems, and Signal Processing,34, 513–533.

    Article  Google Scholar 

  57. Sheetal, A., Singh, H., & Kaur, A. (2019). QRS detection of ECG signal using hybrid derivative and MaMeMi filter by effectively eliminating the baseline wander. Analog Integrated Circuits and Signal Processing,98(1), 1–9.

    Article  Google Scholar 

  58. Ren, S., Panahi, S., Rajagopal, K., Akgul, A., Pham, V.-T., & Jafari, S. (2018). A new chaotic flow with hidden attractor: The first hyperjerk system with no equilibrium. Zeitschrift für Naturforschung. https://doi.org/10.1515/zna-2017-0409.

    Article  Google Scholar 

  59. Nguomkam Negou, A., Kengne, J., & Tchiotsop, D. (2018). Periodicity, chaos and multiple coexisting attractors in a generalized Moore-Spiegel system. Chaos, Solitons & Fractals,107, 275–289.

    Article  MathSciNet  MATH  Google Scholar 

  60. Luo, X., & Small, M. (2007). On a dynamical system with multiple chaotic attractors. International Journal of Bifurcation and Chaos,17(9), 3235–3251.

    Article  MathSciNet  MATH  Google Scholar 

  61. Gupta, V., & Mittal, M. (2018). Dimension reduction and classification in ECG signal interpretation using FA and PCA: A comparison. Jangjeon Mathematical Society,21(4), 765–777.

    MathSciNet  MATH  Google Scholar 

  62. Sahoo, S., Biswal, P., Das, T., & Sabut, S. (2016). De-noising of ECG signal and QRS detection using hilbert transform and adaptive thresholding. Procedia Technology,25, 68–75.

    Article  Google Scholar 

  63. Ghaffari, A., Golbayani, H., & Ghasemi, M. (2008). A new mathematical based QRS detector using continuous wavelet transform. Computers & Electrical Engineering,34, 81–91.

    Article  MATH  Google Scholar 

  64. Yazdani, S., & Vesin, J. M. (2016). Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Digital Signal Processing,56, 100–109.

    Article  MathSciNet  Google Scholar 

  65. Manikandan, M. S., & Soman, K. P. (2012). A novel method for detecting R-peaks in electrocardiogram signal. Biomedical Signal Processing and Control,7, 118–128.

    Article  Google Scholar 

  66. Li, C., Zheng, C., & Tai, C. (1995). Detection of ECG characteristic points using wavelet transforms. IEEE Transactions on Biomedical Engineering,1, 21–28.

    Google Scholar 

  67. Lee, J., Jeong, K., Yoon, J., Lee, M. (1996). A simple real-time QRS detection algorithm, In Proceedings of the 18th IEEE annual international conference engineering in medicine and biology society, Netherlands (pp. 1396–1398).

  68. Poli, R., Cagnoni, S., & Valli, G. (1995). Genetic design of optimum linear and nonlinear QRS detectors. IEEE Transactions on Biomedical Engineering,42(11), 1137–1141.

    Article  Google Scholar 

  69. Afonso, V., Tompkins, W. J., Nguyen, T., & Luo, S. (1999). ECG beat detection using filter banks. IEEE Transactions on Biomedical Engineering,46(2), 192–202.

    Article  Google Scholar 

  70. Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering,3, 230–236.

    Article  Google Scholar 

  71. Martis, R. J., Acharya, U. R., Lim, C. M., & Suri, J. S. (2013). Characterization of ECG beats from cardiac arrhythmia using discrete cosine transform in PCA framework. Knowledge-Based Systems,45, 76–82.

    Article  Google Scholar 

  72. Martis, R. J., Acharya, U. R., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2012). Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Systems with Applications,39, 11792–11800.

    Article  Google Scholar 

  73. Chiu, C. C., Lin, T. H., & Liau, B. Y. (2005). Using correlation coefficient in ECG waveform for arrhythmia detection. Biomedical Engineering: Applications, Basis and Communications,17, 37–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Mittal, M. & Mittal, V. R-peak detection based chaos analysis of ECG signal. Analog Integr Circ Sig Process 102, 479–490 (2020). https://doi.org/10.1007/s10470-019-01556-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01556-1

Keywords

Navigation