Skip to main content
Log in

A wide linear range CMOS OTA and its application in continuous-time filters

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we have proposed a highly linear Operational Transconductance Amplifier (OTA) with wide linear input range. The proposed OTA utilizes conventional source degeneration with an auxiliary differential pair which increases the linear range significantly by reducing the distortion components. The proposed OTA is targeted for current mode circuit applications including low-frequency continuous time filters. A second-order fully differential filter architecture is also implemented by using this proposed OTA. The linear OTA and the filter are implemented in SCL 180 nm CMOS process technology with 1.8 V supply voltage. The proposed OTA achieves third order harmonic distortion (\({\textit{HD}}_3\)) of \(-\,74.3\) dB, inter modulation distortion (\({\textit{IM}}_3\)) of \(-\,75.5\) dB for \(600\,\hbox{mV}_{p-p}\) differential input with 1 MHz signal frequency and a linear range of 0.9 V for 1% transconductance variation. The filter is designed for 100 kHz cutoff frequency and achieves \({\textit{HD}}_3\) of \(-\,68.75\) dB and \({\textit{IM}}_3\) of \(-\,64.3\) dB for \(300\,\hbox{mV}_{p-p}\), 10 kHz input signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kar, S. K., & Sen, S. (2011). Tunable square-wave generator for integrated sensor applications. IEEE Transactions on Instrumentation and Measurement, 60(10), 3369–3375.

    Article  Google Scholar 

  2. Kar, S. K., & Sen, S. (2013). Linearity improvement of source degenerated transconductance amplifiers. Analog Integrated Circuits and Signal Processing, 74(2), 399–407.

    Article  Google Scholar 

  3. Krummenacher, F., & Joehl, N. (1988). A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE Journal of Solid-State Circuits, 23(3), 750–758.

    Article  Google Scholar 

  4. Tsividis, Y., Czarnul, Z., & Fang, S. C. (1986). MOS transconductors and integrators with high linearity. Electronics Letters, 22(5), 245–246.

    Article  Google Scholar 

  5. Bahmani, F., & Sanchez-Sinencio, E. (Sept. 2004). A highly linear pseudo-differential transconductance [CMOS OTA]. In Proceedings of the 30th European solid-state circuits conference (pp. 111–114).

  6. Mohieldin, A. N., Sanchez-Sinencio, E., & Silva-Martinez, J. (2003). A fully balanced pseudo-differential OTA with common-mode feedforward and inherent common-mode feedback detector. IEEE Journal of Solid-State Circuits, 38(4), 663–668.

    Article  Google Scholar 

  7. Nedungadi, A., & Viswanathan, T. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems, 31(10), 891–894.

    Article  Google Scholar 

  8. Tsividis, Y. P. (1994). Integrated continuous-time filter design/spl minus/an overview. IEEE Journal of Solid-State Circuits, 29(3), 166–176.

    Article  Google Scholar 

  9. Silva-Martinez, J., & Salcedo-Suñer, J. (1997). IC voltage to current transducers with very small transconductance. Analog Integrated Circuits and Signal Processing, 13(3), 285–293.

    Article  Google Scholar 

  10. Silva-Martinez, J., & Solis-Bustos, S. (May 1999). Design considerations for high performance very low frequency filters. In ISCAS’99. Proceedings of the 1999 IEEE international symposium on circuits and systems VLSI (Cat. No.99CH36349) Vol 2 (pp. 648–651).

  11. Solis-Bustos, S., Silva-Martinez, J., Maloberti, F., & Sanchez-Sinencio, E. (2000). A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(12), 1391–1398.

    Article  Google Scholar 

  12. Coban, A. L., & Allen, P. E. (1994). Low-voltage CMOS transconductance cell based on parallel operation of triode and saturation transconductors. Electronics Letters, 30(14), 1124–1126.

    Article  Google Scholar 

  13. Kar, S. K., & Sen, S. (2012). A highly linear CMOS transconductance amplifier in 180 nm process technology. Analog Integrated Circuits and Signal Processing, 72(1), 163–171.

    Article  Google Scholar 

  14. Silva-Martinez, J., Steyaert, M. S. J., & Sansen, W. M. C. (1991). A large-signal very low-distortion transconductor for high-frequency continuous-time filters. IEEE Journal of Solid-State Circuits, 26(7), 946–955.

    Article  Google Scholar 

  15. Reddy, N., & Swamy, M. (1984). Switched-capacitor realization of FIR filters. IEEE Transactions on Circuits and Systems, 31(4), 417–419.

    Article  Google Scholar 

  16. Williams, A. B., & Taylor, F. J. (1995). Electronic filter design handbook. New York: McGraw-Hill.

    Google Scholar 

  17. Kunsagi, L., & Temes, G. C. (1988). Buffer-based switched-capacitor gain stages. Electronics Letters, 24(5), 254–255.

    Article  Google Scholar 

  18. Larson, L. E., & Temes, G. C. (1986). Switched-capacitor gain stage with reduced sensitivity to finite amplifier gain and offset voltage. Electronics Letters, 22(24), 1281–1283.

    Article  Google Scholar 

  19. Chang, Y., Choma, J., & Wills, J. (May 2000). The design and analysis of a RF CMOS bandpass filter. In 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353) Vol 2 (pp. 625–628).

  20. Petraglia, A., & Mitra, S. K. (2000). A non-recursive switched-capacitor filter implementation for narrow-band signal processing applications. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(9), 832–839.

    Article  Google Scholar 

  21. Canive, J. M., Gomes, J. G. R. C., & Petraglia A. (May 2000). A CMOS low sensitivity switched-capacitor video filter. In 2000 IEEE international symposium on circuits and systems. emerging technologies for the 21st century. Proceedings (IEEE Cat No.00CH36353) Vol 3 (pp. 165–168).

  22. Torrance, R., Viswanathan, T., & Hanson, J. (1985). CMOS voltage to current transducers. IEEE Transactions on Circuits and Systems, 32(11), 1097–1104.

    Article  Google Scholar 

  23. Ibrahim, M. A. A., & Onabajo, M. (May 2017). Linear input range extension for low-voltage operational transconductance amplifiers in gm-c filters. In 2017 IEEE international symposium on circuits and systems (ISCAS) (pp. 1–4).

  24. Soares, C. F. T., de Moraes, G. S., & Petraglia, A. (2014). A low-transconductance OTA with improved linearity suitable for low-frequency Gm-C filters. Microelectronics Journal, 45(11), 1499–1507.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Visvesvaraya Ph.D. Scheme for Electronics and IT/ITes of Ministry of Electronics and Information Technology, Government of India, Grant no- 1000110042 and Special Manpower Development Programme for Chips-to-System Design (SMDP-C2SD), MeitY, Government of India. Semi-Conductor Laboratory, Department of Space, Government of India, has acknowledged for valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sougata Kumar Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, T.B., Kar, S.K. & Boolchandani, D. A wide linear range CMOS OTA and its application in continuous-time filters. Analog Integr Circ Sig Process 103, 283–290 (2020). https://doi.org/10.1007/s10470-020-01621-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01621-0

Keywords

Navigation