Skip to main content
Log in

Robust linear sampling switch for low-voltage SAR ADCs

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a linear sampling switch for low-voltage successive-approximation register (SAR) analogue-to-digital converters (ADCs) operating at a frequency of tens of MHz. The proposed switch employs a bootstrapped transmission gate, where the bulk voltages are generated internally to minimize variations in the threshold voltage of transistors with input signal amplitude. Thus, ensuring almost constant and low ON-resistance (\(R_{ON}\)) over complete input signal range without using wide transistors, charge pumps, or both, at low supply voltages. The proposed switch was designed using standard 65 nm CMOS technology. The post-layout simulations have shown a signal to noise and distortion ratio (SNDR) of 87.81 dB, a spurious-free dynamic range (SFDR) of 90 dB and a total harmonic distortion (THD) of \(-91.5\,\hbox {dB}\) at a sampling frequency and supply voltage of 100 MHz and 0.8 V, respectively. In addition, the switch has shown a maximum variation of 1% in \(R_{ON}\) over input signal amplitude at different process corners and temperature, which is low compared to other sampling switches reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vidojkovic, M., et al. (2011). A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications. IEEE Transactions on Biomedical Circuits and Systems, 5(6), 523–534. https://doi.org/10.1109/TBCAS.2011.217334.

    Article  Google Scholar 

  2. Harpe, P., Dolmans, G., Philips, K. & Groot, H. (2012). A 0.7V 7-to-10bit 0-to-2MS/s flexible SAR ADC for ultra low-power wireless sensor nodes. In European solid-state circuits conference, Bordeaux, France (pp. 373–376). https://doi.org/10.1109/ESSCIRC.2012.6341363.

  3. Wulff, C. & Ytterdal, T. (2016). A compiled 3.5fJ/conv.step 9b 20MS/s SAR ADC for wireless applications in 28nm FDSOI. In European solid-state circuits conference, Lausanne, Switzerland, (pp. 177–180). https://doi.org/10.1109/ESSCIRC.2016.7598271.

  4. Chen, M., Gu, Y., Wu, T., Hsu, P., & Liu, T. (1995). Weak inversion charge injection in analog MOS switches. IEEE Journal of Solid-State Circuits, 30(5), 604–606. https://doi.org/10.1109/4.384177.

    Article  Google Scholar 

  5. Xu, W., & Friedman, E. G. (2002). Clock feedthrough in CMOS analog transmission gate switches. In 15th Annual IEEE International ASIC/SOC Conference, Rochester, NY, USA (pp. 181–185). https://doi.org/10.1109/ASIC.2002.1158052.

  6. Abo, A. M., & Gray, P. R. (1999). A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analogue-to-digital converter. IEEE Journal of Solid-State Circuits, 34(5), 599–606.

  7. Ramkaj, A. T., Strackx, M., Steyaert, M. S. J., & Tavernier, F. (2018). A 1.25-GS/s 7-b SAR ADC with 36.4-dB SNDR at 5 GHz using switch-bootstrapping, USPC DAC and triple-tail comparator in 28-nm CMOS. IEEE Journal of Solid-State Circuits, 53(7), 1889–1901. https://doi.org/10.1109/JSSC.2018.2822823.

    Article  Google Scholar 

  8. Galhardo, A., Goes, J. & Paulino, N. (2006). Novel linearization technique for low-distortion high-swing CMOS switches with improved reliability. In IEEE international symposium on circuits and systems. Island of Kos. (pp. 4). https://doi.org/10.1109/ISCAS.2006.1693006

  9. Wang, L., Yin, Wj, Xu, J., & Ren, Jy. (2006). Dual-channel bootstrapped switch for high-speed high-resolution sampling. Electronics Letters, 42(22), 1275–1276. https://doi.org/10.1049/el:20062344.

    Article  Google Scholar 

  10. Razavi, B. (2015). The bootstrapped switch [A Circuit for All Seasons]. IEEE Solid-State Circuits Magazine, 7(3), 12–15. https://doi.org/10.1109/MSSC.2015.2449714.

    Article  Google Scholar 

  11. Neamen, D. (2011). Semiconductor physics and devices : basic principles. New York: MacGraw Hill.

    Google Scholar 

  12. Hariprasath, V., Guerber, J., Lee, S., & Moon, U. (2010). Merged capacitor switching based sar adc with highest switching energy-efficiency. Electronics Letters, 46(9), 620–621. https://doi.org/10.1049/el.2010.0706.

    Article  Google Scholar 

  13. Yue, X. (2013). Determining the reliable minimum unit capacitance for the DAC capacitor array of SAR ADCs. Microelectronics Journal, 44(6), 473–478. https://doi.org/10.1016/j.mejo.2013.03.011.

    Article  Google Scholar 

  14. Razavi, B. (1995). Principles of Data Conversion System Design. New York: IEEE Press.

    Google Scholar 

  15. Osipov, D., & Paul, S. (2018). Flying-capacitor bottom-plate sampling scheme for low-power high-resolution SAR ADCs. In IEEE Nordic circuits and systems conference (norcas): NORCHIP and international symposium of system-on-chip (SoC) (pp. 1–4). https://doi.org/10.1109/NORCHIP.2018.8573458

  16. Mei, F., Shu, Y., & Yu, Y. (2017). A 10-bit 150MS/S SAR ADC with a novel capacitor switching scheme. In 3rd international conference on computational intelligence & communication technology (CICT) (pp. 1–6). https://doi.org/10.1109/CIACT.2017.7977323.

  17. Lee, P., Lin, J., & Hsieh, C. (2016). A 04 V 194 fJ/conversion-step 10 bit 750 kS/s SAR ADC with input-range-adaptive switching. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(12), 2149–2157. https://doi.org/10.1109/TCSI.2016.2617879.

    Article  Google Scholar 

  18. Lee, P., Kao, C., & Hsieh, C. (2016). A 0.4V 1.94fJ/conversion-step 10b 750kS/s SAR ADC with input-range-adaptive switching. In IEEE international symposium on circuits and systems (ISCAS) (pp. 1042–1045). https://doi.org/10.1109/ISCAS.2016.7527422.

Download references

Acknowledgements

This work is supported by early career research grant with Project Ref. ECR/2017/000931. This publication is also an outcome of the R & D work undertaken project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawna Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, B., Bahubalindruni, P.G., Deb, S. et al. Robust linear sampling switch for low-voltage SAR ADCs. Analog Integr Circ Sig Process 103, 345–353 (2020). https://doi.org/10.1007/s10470-020-01641-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01641-w

Keywords

Navigation