Skip to main content
Log in

Resistorless current mode precision rectifier using EXCCII

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new current mode precision rectifier circuit is proposed using a single EXCCII and two nMOS transistors. The novelty of the circuit is that it can provide all the possible rectified outputs, namely ± full wave as well as ± half wave simultaneously without any alteration of topology. Moreover, it has low input impedance and high output impedance, which is suitable for fully cascadable operation. It is suitable for a very high frequency of operation. The operating frequency is found to be 125 MHz and above. The temperature, average DC voltage output, noise, power consumption, input dynamic range (± 500 µA), Monte-Carlo and total harmonic distortion analysis are carried out to check the performance quality. The conversion of sinusoidal signal to root-mean-square circuit is also included here as an application of the proposed rectifier The proposed circuit is simulated using Cadence ORCAD PSpice simulator with 0.18 µm CMOS technology parameters. Simulation results agree well with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Maheshwari, S. (2018). Voltage-mode full-wave precision rectifier and an extended application as ASK/BPSK circuit using a single EXCCII. International Journal of Electronics and Communications,84, 234–241.

    Article  Google Scholar 

  2. Maheshwari, S. (2017). Realization of simple electronic functions using EXCCII. Journal of Circuits Systems and Computers,26(11), 1–12.

    Article  Google Scholar 

  3. Yuce, E., Minaei, S., & Ibrahim, M. A. (2017). A novel full-wave rectifier/sinusoidal frequency doubler topology based on CFOAs. Analog Integrated Circuits and Signal Processing,93(2), 351–362.

    Article  Google Scholar 

  4. Ibrahim, M. A., Yuce, E., & Minaei, S. (2016). A new DVCC-based fully cascadable voltage-mode full-wave rectifier. Journal of Computational Electronics,15(4), 1440–1449.

    Article  Google Scholar 

  5. Koton, J., Vrba, K., & Herencsar, N. (2014). Voltage-mode full-wave rectifier based on DXCCII. Analog Integrated Circuits and Signal Processing,81(1), 99–107.

    Article  Google Scholar 

  6. Beg, P. I., Khan, A., & Maheshwari, S. (2012). Biphase amplifier based precision rectifiers using current conveyors. International Journal of Computer Applications,42(3), 14–18.

    Article  Google Scholar 

  7. Koton, J., Herencsar, N., & Vrba, K. (2010). Minimal configuration precision full-wave rectifier using current and voltage conveyors. IEICE Electronics Express,7(12), 844–849.

    Article  Google Scholar 

  8. Kumngem, M., Saengthong, P., & Junnapiya, S. (2009). DDCC-based full-wave rectifier. International colloquium on signal processing & its applications, pp. 312–315.

  9. Djukic, S. R. (2008). Full-wave current conveyor precision rectifier. Serbian Journal of Electrical Engineering,5(2), 263–271.

    Article  Google Scholar 

  10. Anuntahirunrat, K., Tangsrirat, W., Riewruja, V., & Surakampontorn, W. (2004). Sinusoidal frequency doubler and full-wave rectifier based on translinear current-controlled current conveyors. International Journal Electronics and Communications,91(4), 227–239.

    Article  Google Scholar 

  11. Biolek, D., Hancioglu, E., & Keskin, A. U. (2008). High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. International Journal of Electronics and Communications,62(2), 92–96.

    Article  Google Scholar 

  12. Khateb, F., Vavra, J., & Biolek, D. (2010). A novel current-mode full wave rectifier based on one CDTA and two diodes. Radio engineering,19(3), 437–445.

    Google Scholar 

  13. Koton, J., Herencsár, N., Vrba, K., & Cicekoglu, O. (2010). Versatile precision full-wave rectifier using current and voltage conveyor. IEEE international conference on applied electronics, pp. 79–82.

  14. Koton, J., Herencsar, N., & Vrba, K. (2011). Current and voltage conveyors in current and voltage mode precision full-wave rectifiers. Radio engineering,20(1), 19–24.

    Google Scholar 

  15. Koton, J., Lahiri, A., Herencsar, N., & Vrba, K. (2011). Current-mode dual-phase precision full-wave rectifier using current-mode two-cell winner-takes-all (WTA) circuit. Radio engineering,20(2), 428–432.

    Google Scholar 

  16. Koton, J., Herencsar, N., Vrba, K., & Minaei, S. (2011). Precision full-wave current-mode rectifier using current differencing transconductance amplifier. IEEE international conference on communication software and networks (ICCSN), pp. 460–463.

  17. Tangsriirat, W., Pukkalanun, T., & Surakampontorn, W. (2011). Synthesis of current differencing transconductance amplifier-based current limiters and its applications. Journal of Circuits Systems and Computers,20(2), 185–206.

    Article  Google Scholar 

  18. N Pandey R Pandey 2013 Current mode full-wave rectifier based on a single MZC-CDTA. Active and Passive Electronic Components, Article ID 967057, pp. 1–5.

    Google Scholar 

  19. Shaterian, M., Twigg, C. M., & Azhari, J. (2013). An MTL-based configurable block for current-mode nonlinear analog computation. IEEE Transactions on Circuits Systems II Express Briefs,60(9), 587–591.

    Article  Google Scholar 

  20. Kacar, F., & Basak, M. E. (2014). A new mixed mode full-wave rectifier realization with current differencing transconductance amplifier. Journal of Circuits, Systems, and Computers,23(7), 1–15.

    Article  Google Scholar 

  21. Sagbas, M., Minaei, S., & Ayten, U. E. (2016). Component reduced current-mode full-wave rectifier circuits using a single active component. IET Circuits Devices & Systems,10(1), 1–11.

    Article  Google Scholar 

  22. Agrawal, D., & Maheshwari, S. (2017). Current mode precision full wave rectifier circuits. Circuits Systems Signal Process. https://doi.org/10.1007/s00034-017-0531-8.

    Article  Google Scholar 

  23. Safari, L., Yuce, E., & Minaei, S. (2018). A new low-power current-mode MOS only versatile precision rectifier. International Journal of Electronics and Communications,83, 40–51.

    Article  Google Scholar 

  24. Erkan, S., Ayten, U. E., & Sagbas, M. (2015). Current-mode full-wave rectifier circuits using current differencing buffered amplifier. 38th international conference on telecommunications and signal processing (TSP), pp. 344–348.

  25. Koton, J., Herencsar, N., Vrba, K. (2011). Current-mode precision full-wave rectifier using single DXCCII and two diodes. Circuit theory and design (ECCTD), 20th European conference. https://doi.org/10.1109/ECCTD.2011.6043400, 2011, pp. 508–511.

  26. Tiliute, D. E. (2003). Full-wave current-mode precision rectifiers using unity-gain cells. Elektronika Ir Elektrotechnika,49(7), 26–29.

    Google Scholar 

  27. Koton, J., Herencsar, N., & Vrba, K. (2010). Minimal configuration precision full-wave rectifier using current and voltage conveyors. IEICE Electron Express,7, 844–849.

    Article  Google Scholar 

  28. Yuce, E., & Alpaslan, H. (2012). A CMOS current rectifier configuration suitable for integration. Journal of Circuits, Systems, and Computers,21(7), 12.

    Article  Google Scholar 

  29. Minaei, S., & Yuce, E. (2010). New squarer circuits and a current-mode full-wave rectifier topology suitable for integration. Radio engineering,19(4), 657–661.

    Google Scholar 

  30. Chang, C. C., & Liu, S. I. (2000). Current-mode full-wave rectifier and vector summation circuit. Electronics Letters,36(19), 1599–1600.

    Article  Google Scholar 

  31. Burapattanasiri, B. (2009). High-precision multi-wave rectifier circuit operating in low voltage + 1.5 Volt current mode. International Journal of Computer Science and Information Security,6(3), 160–164.

    Google Scholar 

  32. Petrovic, P. B. (2017). Variable mode CMOS full-wave rectifier. Analog Integrated Circuits and Signal Processing,90, 659–668.

    Article  Google Scholar 

  33. Wang, Z. (1990). Novel pseudo RMS current converter for sinusoidal signals using a CMOS precision current rectifier. IEEE Transactions on Instrumentation and Measurement,39(4), 670–671.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal K. Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Paul, S.K. Resistorless current mode precision rectifier using EXCCII. Analog Integr Circ Sig Process 103, 511–522 (2020). https://doi.org/10.1007/s10470-020-01657-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01657-2

Keywords

Navigation