Skip to main content

Advertisement

Log in

Modeling and design of an ultra low-power NEMS relays: application to logic gate inverters

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work we propose a design based on a nanoelectromechanical relay acting as a logic gate inverter. The proposed inverter is made of a double cantilever nanobeam actuated by a fixed central electrode carrying the input signals. The static and dynamic behaviors of the ohmic nanoinverter gate are investigated using an electromechanical mathematical model that fully incorporates nonlinear form of the electrostatic force and the ohmic contact of the nanobeams’ tip with the fixed output electrode. The derived electromechanical model is used for electrical and energy analysis. Simulations are used to confirm the functionality of the inverter. The analysis of the switching energy showed very low power consumption compared to classical CMOS inverters. It is shown that the proposed inverter dissipates only 0.45 fJ to code a “1” logic-state and 0.023 fJ to code a “0” logic-state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bellaouar, A., & Elmasry, M. (2012). Low-power digital VLSI design: Circuits and systems. Berlin: Springer.

    Google Scholar 

  2. Birleanu, C., & Pustan, M. (2015). Analysis of the adhesion effect in RF-mems switches using atomic force microscope. Analog Integrated Circuits and Signal Processing, 82(3), 571–581.

    Google Scholar 

  3. Blaauw, D., & Zhai, B. (2006). Energy efficient design for subthreshold supply voltage operation. In Proceedings. 2006 IEEE international symposium on circuits and systems, 2006. ISCAS 2006. IEEE, 4 pp.

  4. Calhoun, B. H., & Chandrakasan, A. (2004). Characterizing and modeling minimum energy operation for subthreshold circuits. In Proceedings of the 2004 international symposium on Low power electronics and design, ACM, pp. 90–95.

  5. Chandrakasan, A. P., & Brodersen, R. W. (1995). Minimizing power consumption in digital CMOS circuits. Proceedings of the IEEE, 83(4), 498–523.

    Google Scholar 

  6. Chandrakasan, A. P., Sheng, S., & Brodersen, R. W. (1992). Low-power CMOS digital design. IEICE Transactions on Electronics, 75(4), 371–382.

    Google Scholar 

  7. Girbau, D., Lazaro, A., & Pradell, L. (2003). RF MEMS switches based on the buckle-beam thermal actuator. In 33rd European Microwave Conference, 2003, Vol. 2. IEEE, pp. 651–654.

  8. Gross, S., Zhang, Q., Trolier-McKinstry, S., Tadigadapa, S., & Jackson, T. (2003). RF MEMS piezoelectric switch. In Device research conference, 2003. IEEE, pp. 99–100.

  9. Gupta, R. K. (1996). Pull-in dynamics of electrostatically-actuated beams. In Proceedings of solid-state sensor and actuator workshop (Hilton Head 1996), Hilton Head Island, SC, June 3–6, pp. 1–2.

  10. Hah, D., & Hong, S. (2000). A low-voltage actuated micromachined microwave switch using torsion springs and leverage. IEEE Transactions on Microwave theory and techniques, 48(12), 2540–2545.

    Google Scholar 

  11. Hanson, S., Zhai, B., Bernstein, K., Blaauw, D., Bryant, A., Chang, L., et al. (2006). Ultralow-voltage, minimum-energy CMOS. IBM Journal of Research and Development, 50(4.5), 469–490.

    Google Scholar 

  12. Houri, S., Poulain, C., Valentian, A., & Fanet, H. (2013). Performance limits of nanoelectromechanical switches (NEMS)-based adiabatic logic circuits. Journal of Low Power Electronics and Applications, 3(4), 368–384.

    Google Scholar 

  13. Houri, S., Billiot, G., Belleville, M., Valentian, A., & Fanet, H. (2015). Limits of CMOS technology and interest of NEMS relays for adiabatic logic applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(6), 1546–1554.

    MathSciNet  MATH  Google Scholar 

  14. Kam, H., Liu, T. J. K., Markovic, D., Alon, E., et al. (2011). Design, optimization, and scaling of mem relays for ultra-low-power digital logic. IEEE Transactions on Electron Devices, 58(1), 236–250.

    Google Scholar 

  15. Lee, S., Ramadoss, R., Buck, M., Bright, V., Gupta, K., & Lee, Y. (2004). Reliability testing of flexible printed circuit-based RF MEMS capacitive switches. Microelectronics Reliability, 44(2), 245–250.

    Google Scholar 

  16. Li, H., Ruan, Y., You, Z., & Song, Z. (2020). Design and fabrication of a novel MEMS relay with low actuation voltage. Micromachines, 11(2), 171.

    Google Scholar 

  17. Liu, A., Tang, M., Agarwal, A., & Alphones, A. (2005). Low-loss lateral micromachined switches for high frequency applications. Journal of Micromechanics and Microengineering, 15(1), 157.

    Google Scholar 

  18. Loh, O. Y., & Espinosa, H. D. (2012). Nanoelectromechanical contact switches. Nature Nanotechnology, 7(5), 283.

    Google Scholar 

  19. Meirovitch, L., & Parker, R. (2001). Fundamentals of vibrations. Applied Mechanics Reviews, 54, B100.

    Google Scholar 

  20. Morgenshtein, A. (2012). Short-circuit power reduction by using high-threshold transistors. Journal of Low Power Electronics and Applications, 2(1), 69–78.

    Google Scholar 

  21. Najar, F., Choura, S., El-Borgi, S., Abdel-Rahman, E., & Nayfeh, A. (2005). Modeling and design of variable-geometry electrostatic microactuators. Journal of Micromechanics and Microengineering, 15(3), 419.

    MATH  Google Scholar 

  22. Najar, F., Nayfeh, A., Abdel-Rahman, E., Choura, S., & El-Borgi, S. (2010). Nonlinear analysis of MEMS electrostatic microactuators: primary and secondary resonances of the first mode. Journal of Vibration and Control, 16(9), 1321–1349.

    MathSciNet  MATH  Google Scholar 

  23. Najar, F., Ghommem, M., & Abdelkefi, A. (2020). Multifidelity modeling and comparative analysis of electrically coupled microbeams under squeeze-film damping effect. Nonlinear Dynamics, 99(1), 445–460.

    MATH  Google Scholar 

  24. Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2007). Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 48(1–2), 153–163.

    MATH  Google Scholar 

  25. Nowak, E. J. (2002). Maintaining the benefits of CMOS scaling when scaling bogs down. IBM Journal of Research and Development, 46(2.3), 169–180.

    Google Scholar 

  26. Parsa, R., Shavezipur, M., Lee, W., Chong, S., Lee, D., Wong, HS., Maboudian, R., & Howe, R. (2011). Nanoelectromechanical relays with decoupled electrode and suspension. In: 2011 IEEE 24th international conference on micro electro mechanical systems (MEMS). IEEE, pp. 1361–1364.

  27. Patel, C. D., & Rebeiz, G. M. (2010). An RF-MEMS switch with MN contact forces. In: 2010 IEEE MTT-S international microwave symposium. IEEE, pp. 1242–1245.

  28. Pawashe, C., Lin, K., & Kuhn, K. J. (2013). Scaling limits of electrostatic nanorelays. IEEE Transactions on Electron Devices, 60(9), 2936–2942.

    Google Scholar 

  29. Rebeiz, G. (2003). RF MEMS: Theory, design and technology. Hoboken: Wiley-Interscience.

    Google Scholar 

  30. Roukes, M. L. (2001). Nanoelectromechanical systems. In E. Obermeier (Ed.), Transducers ’01 Eurosensors XV. Berlin, Heidelberg: Springer.

  31. Samaali, H., & Najar, F. (2017). Design of a capacitive MEMS double beam switch using dynamic pull-in actuation at very low voltage. Microsystem Technologies, 23(12), 5317–5327.

    Google Scholar 

  32. Samaali, H., Najar, F., Choura, S., Nayfeh, A. H., & Masmoudi, M. (2009). Novel design of MEMS ohmic RF switch with low voltage actuation. In 2009 3rd international conference on signals, circuits and systems (SCS). IEEE, pp. 1–5.

  33. Samaali, H., Najar, F., Choura, S., Nayfeh, A. H., & Masmoudi, M. (2011). A double microbeam MEMS ohmic switch for RF-applications with low actuation voltage. Nonlinear Dynamics, 63(4), 719–734.

    Google Scholar 

  34. Samaali, H., Najar, F., & Choura, S. (2014). Dynamic study of a capacitive MEMS switch with double clamped-clamped microbeams. Shock and Vibration, 2014, 1–7. https://doi.org/10.1155/2014/807489.

    Google Scholar 

  35. Samaali, H., Najar, F., Ouni, B., & Choura, S. (2015a). MEMS SPDT microswitch with low actuation voltage for RF applications. Microelectronics International, 32(2), 55–62.

    Google Scholar 

  36. Samaali, H., Ouni, B., & Najar, F. (2015b). Design and modelling of MEMS DC–DC converter. Electronics Letters, 51(1), 860–861.

    Google Scholar 

  37. Samaali, H., Perrin, Y., Galisultanov, A., Fanet, H., Pillonnet, G., & Basset, P. (2019). Mems four-terminal variable capacitor for low power capacitive adiabatic logic with high logic state differentiation. Nano Energy, 55, 277–287.

    Google Scholar 

  38. Shavezipur, M., Harrison, K., Lee, W. S., Mitra, S., Wong, H. S. P., & Howe, R. T. (2015). Partitioning electrostatic and mechanical domains in nanoelectromechanical relays. Journal of Microelectromechanical Systems, 24(3), 592–598.

    Google Scholar 

  39. Song, Y. H., Han, C. H., Kim, M. W., Lee, J. O., & Yoon, J. B. (2012). An electrostatically actuated stacked-electrode MEMS relay with a levering and torsional spring for power applications. Journal of Microelectromechanical Systems, 21(5), 1209–1217.

    Google Scholar 

  40. Spencer, M., Chen, F., Wang, C. C., Nathanael, R., Fariborzi, H., Gupta, A., et al. (2011). Demonstration of integrated micro-electro-mechanical relay circuits for VLSI applications. IEEE Journal of Solid-State Circuits, 46(1), 308–320.

    Google Scholar 

  41. Stornelli, V. (2009). Low voltage low power fully differential buffer. Journal of Circuits, Systems, and Computers, 18(03), 497–502.

    Google Scholar 

  42. Tang, M., Liu, A., Agarwal, A., Zhang, Q., & Win, P. (2004). A new approach of lateral RF mems switch. Analog Integrated Circuits and Signal Processing, 40(2), 165–173.

    Google Scholar 

  43. Veendrick, H. J. (1984). Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits. IEEE Journal of Solid-State Circuits, 19(4), 468–473.

    Google Scholar 

  44. Wong, J. E. (2000). Analysis, design, fabrication, and testing of a mems switch for power applications. PhD thesis, Massachusetts Institute of Technology.

  45. Wright, J. A., & Tai, Y. C. (1998). Micro-miniature electromagnetic switches fabricated using MEMS technology. In Proceedings of the relay conference, National association of relay manufacturers, Vol. 46, pp. 13–21.

  46. Yasoda, B., & Basha, S. K. (2013). Performance analysis of energy efficient and charge recovery adiabatic techniques for low power design. IOSR Journal of Engineering (IOSRJEN), 3(6), 14–21.

    Google Scholar 

  47. Yi, Z., Guo, J., Chen, Y., Zhang, H., Zhang, S., Xu, G., et al. (2016). Vertical, capacitive microelectromechanical switches produced via direct writing of copper wires. Microsystems & Nanoengineering, 2(16), 010.

    Google Scholar 

  48. Zhai, B., Blaauw, D., Sylvester, D., & Flautner, K. (2005). The limit of dynamic voltage scaling and insomniac dynamic voltage scaling. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(11), 1239–1252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fehmi Najar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaali, H., Najar, F. & Chaalane, A. Modeling and design of an ultra low-power NEMS relays: application to logic gate inverters. Analog Integr Circ Sig Process 104, 17–26 (2020). https://doi.org/10.1007/s10470-020-01658-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01658-1

Keywords

Navigation