Skip to main content
Log in

Global view on reactivity: switch graphs and their logics

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The notion of reactive graph generalises the one of graph by allowing the base accessibility relation to change when its edges are traversed. Can we represent these more general structures using points and arrows? We prove this can be done by introducing higher order arrows: the switches. The possibility of expressing the dependency of the future states of the accessibility relation on individual transitions by the use of higher-order relations, that is, coding meta-relational concepts by means of relations, strongly suggests the use of modal languages to reason directly about these structures. We introduce a hybrid modal logic for this purpose and prove its completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Areces, C.: Logic engineering. The case of description and hybrid logics. PhD thesis, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands (2000)

  2. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics. In: Proceedings of the 13th International Workshop and 8th Annual Conference of the EACSL on Computer Science Logic, CSL ’99, pp. 307–321. Springer, London (1999)

    Google Scholar 

  3. Areces, C., Blackburn, P., Delany, S.R.: Bringing them all together. J. Log. Comput. 11, 657–669 (2001)

    Article  MATH  Google Scholar 

  4. Areces, C., Carreiro, F., Figueira, S., Mera, S.: Basic model theory for memory logics. In: WoLLIC, pp. 20–34 (2011)

  5. Barringer, H., Gabbay, D.M.: Modal and temporal argumentation networks. In: Essays in Memory of Amir Pnueli, pp. 1–25 (2010)

  6. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Log. J. IGPL 8(3), 339–365 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics. Stud. Log. 84(2), 277–322 (2006)

    Article  MATH  Google Scholar 

  8. Blackburn, P., Tzakova, M.: Hybrid languages and temporal logic. Log. J. IGPL 7(1), 27–54 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Blackburn, P., van Benthem, J.F.A.K.,Wolter, F.: Handbook of modal logic. In: Studies in Logic and Practical Reasoning, vol. 3. Elsevier Science, New York (2006)

    Google Scholar 

  11. Bull, R.A.: An approach to tense logic. Theoria 36(3), 282–300 (1970)

    Article  MathSciNet  Google Scholar 

  12. Crochemore, M., Gabbay, D.M.: Reactive automata. Inf. Comput. 209(4), 692–704 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gabbay, D.M.: A theory of hypermodal logics: mode shifting in modal logic. J. Philos. Logic 31(3), 211–243 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gabbay, D.M.: Reactive Kripke semantics and arc accessibility. In: Carnielli, W., Dionisio, F.M., Mateus, P. (eds) Proceedings of CombLog 2004, pp. 7–20. Centre for Logic and Computation, University of Lisbon (2004)

  15. Gabbay, D.M.: Introducing reactive Kripke semantics and arc accessibility. In: Pillars of Computer Science, pp. 292–341 (2008)

  16. Gabbay, D.M.: Reactive Kripke models and contrary to duty obligations. In: van der Meyden, R., van der Torre, L. (eds.) DEON, Lecture Notes in Computer Science, vol. 5076, pp. 155–173. Springer, Berlin (2008)

    Google Scholar 

  17. Gabbay, D.M.: Reactive intuitionistic tableaux. Synthese 179(2), 253–269 (2011). doi:10.1007/s11229-010-9781-8

    Article  MATH  Google Scholar 

  18. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics: theory and applications. In: Studies in Logic and the Foundations of Mathematics, vol. 148. Elsevier, Amsterdam (2003)

    Google Scholar 

  19. Gabbay, D.M., Marcelino, S.: Modal logics of reactive frames. Stud. Log. 93(2–3), 405–446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gabbay, D.M., Schlechta, K.: Defeasible inheritance systems and reactive diagrams. Log. J. IGPL 17(1), 1–54 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gabbay, D.M., Schlechta, K.: Reactive preferential structures and nonmonotonic consequence. Rev. Symb. Log. 2(2), 414–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gabbay, D.M., Schlechta, K.: An analysis of defeasible inheritance systems. In: Logical Tools for Handling Change in Agent-Based Systems, Cognitive Technologies, pp. 251–293. Springer, Berlin (2010)

    Chapter  Google Scholar 

  23. Gabbay, D.M., Schlechta, K.: A theory of hierarchical consequence and conditionals. J. Logic, Lang. Inf. 19, 3–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gargov, G., Goranko, V.: Modal logic with names. J. Philos. Logic 22, 607–636 (1993). doi:10.1007/BF01054038

    Article  MathSciNet  MATH  Google Scholar 

  25. Harel, D., Pnueli, A.: On the Development of Reactive Systems, pp. 477–498. Springer, New York (1985)

    Google Scholar 

  26. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About Systems (1999)

  27. Marcelino, S.: Modal logic for changing systems. Ph.D. thesis, King’s College London (2011)

  28. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173, 901–934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Prior, A.N.: Modality and quantification in S5. J. Symb. Log. 21(1), 60–62 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  30. Prior, A.: Past, Present and Future. Oxford University Press, Oxford (1967)

    Book  MATH  Google Scholar 

  31. Sattler, U., Vardi, M.: The hybrid μ-calculus. In: Proceedings of IJCAR’01, Siena (2001)

  32. van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning, Lecture Notes in Computer Science, vol. 2605, pp. 268–276. Springer, Berlin (2005)

    Chapter  Google Scholar 

  33. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Class. Log. 17, 129–155 (2007)

    Article  MATH  Google Scholar 

  34. Zanardo, A.: Branching-time logic with quantification over branches: the point of view of modal logic. J. Symb. Logic 61(1), 1–39 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Marcelino.

Additional information

The author Sérgio Marcelino thanks the support of FCT and EU FEDER, via the postdoc scholarship SFRH/BPD/76513/2011, the project FCT PEst-OE/EEI/LA0008/2011 of IT, the FP7-PEOPLE-2012-IRSES GetFun Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme, as well as the PQDR initiative of SGIQ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabbay, D., Marcelino, S. Global view on reactivity: switch graphs and their logics. Ann Math Artif Intell 66, 131–162 (2012). https://doi.org/10.1007/s10472-012-9316-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-012-9316-8

Keywords

Mathematics Subject Classifications (2010)

Navigation