Skip to main content
Log in

Two applications of the spectrum of numbers

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let the base \({\beta}\) be a complex number, \({|\beta| > 1}\), and let \({A \subset \mathbb{C}}\) be a finite alphabet of digits. The A-spectrum of \({\beta}\) is the set \({{S}_{A}(\beta) = {\{\Sigma^{n}_{k=0} {a}_{k}\beta^{k} | n\in \mathbb{N}, {a}_{k} \in A\}}}\). We show that the spectrum \({{S}_{A}(\beta)}\) has an accumulation point if and only if 0 has a particular \({(\beta, A)}\)-representation, said to be rigid.

The first application is restricted to the case that \({\beta > 1}\) and the alphabet is A = {−M, . . . , M}, \({{M \geq}}\)1 integer. We show that the set \({{Z}_{\beta, M}}\) of infinite \({(\beta, A)}\)-representations of 0 is recognizable by a finite Büchi automaton if and only if the spectrum \({{S}_{A}(\beta)}\) has no accumulation point. Using a result of Akiyama–Komornik and Feng, this implies that \({{Z}_{\beta, M}}\) is recognizable by a finite Büchi automaton for any positive integer \({M \geq\lceil {\beta\rceil-1}}\) if and only if \({{\beta}}\) is a Pisot number. This improves the previous bound \({M \geq \lceil \beta\rceil}\).

For the second application the base and the digits are complex. We consider the on-line algorithm for division of Trivedi and Ercegovac generalized to a complex numeration system. In on-line arithmetic the operands and results are processed in a digit serial manner, starting with the most significant digit. The divisor must be far from 0, which means that no prefix of the \({(\beta,A)}\)-representation of the divisor can be small. The numeration system \({(\beta,A)}\) is said to allow preprocessing if there exists a finite list of transformations on the divisor which achieve this task. We show that \({(\beta,A)}\) allows preprocessing if and only if the spectrum \({{S}_{A}(\beta)}\) has no accumulation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama S., Komornik V.: Discrete spectra and Pisot numbers. J. Number Theory, 133, 375–390 (2013)

    Article  MathSciNet  Google Scholar 

  2. Berend D., Frougny Ch.: Computability by finite automata and Pisot bases. Math. Systems Theory 27, 274–282 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bertrand A.: Développements en base de Pisot et répartition modulo 1. C.R. Acad.Sci. Paris, Sépartition modulo 1, C. R. Acad.Sci. Paris, Sér. A, 285, 419–421 (1977)

    MATH  Google Scholar 

  4. Bertrand-Mathis A.: Développements en base \({\theta}\), partition modulo un de la suite \(({x^{\theta^{n}})_{n} {\geq 0}}\), langages codés et \({\theta}\)-shift. Bull.Soc. Math. France, 114, 271–323 (1986)

    Article  MathSciNet  Google Scholar 

  5. M. Brzicová, Ch. Frougny, E. Pelantová and M. Svobodová, On-line multiplication and division in real and complex bases, in: Proceedings of IEEE ARITH 23, I.E.E.E. Computer Society Press (2016), pp. 134–141.

  6. M. Brzicová, Ch. Frougny, E. Pelantová and M. Svobodová, On-line algorithms for multiplication and division in real and complex numeration systems, arXiv:1610.08309 (2016).

  7. Bugeaud Y.: On a property of Pisot numbers and related questions. Acta Math Hungar. 73, 33–39 (1996)

    Article  MathSciNet  Google Scholar 

  8. Erdős P., Joó I., Komornik V.: On the sequence of numbers of the form \(\epsilon_{0} + {\epsilon_{1}{q}} + \cdots + {\epsilon_ {n}}{q}^{n}, \epsilon_{i} \in {0, 1}\) Acta Arith. 83, 201–210 (1998)

    Article  MathSciNet  Google Scholar 

  9. Feng D.-J.: On the topology of polynomials with bounded integer coefficients. J. Eur.Math. Soc. 18, 181–193 (2016)

    Article  MathSciNet  Google Scholar 

  10. Frougny, Ch. : Representation of numbers and finite automata. Math. Systems Theory, 25, 37–60 (1992)

    Article  MathSciNet  Google Scholar 

  11. Frougny Ch., Sakarovitch J.: Automatic conversion from Fibonacci representation to representation in base \({\varphi}\), and a generalization. Internat. J. Algebra Comput. 9, 351–384 (1999)

    Article  MathSciNet  Google Scholar 

  12. Ch. Frougny and J. Sakarovitch, Number representation and finite automata, Chapter 2 in Combinatorics, Automata and Number Theory, C.U.P. (2010).

  13. Garsia A.M.: Arithmetic properties of Bernoulli convolutions. Trans. Amer. Math. Soc. 102, 409–432 (1962)

    Article  MathSciNet  Google Scholar 

  14. Gilbert W.J.: Radix representations of quadratic fields. J. Math. Anal. Appl. 83, 264–274 (1981)

    Article  MathSciNet  Google Scholar 

  15. Hejda T., Pelantová E.: Spectral properties of cubic complex Pisot units. Math. Comp. 85, 401–421 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ito S., Sadahiro T.: Beta-expansions with negative bases. Integers, 9, A22–239259 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kátai I., Kovács B.: Canonical number systems in imaginary quadratic fields. Acta. Math. Acad. Sci. Hungar. 37, 159–164 (1981)

    Article  MathSciNet  Google Scholar 

  18. Knuth D.E.: An imaginary number system. Comm.ACM, 3, 245–247 (1960)

    Article  MathSciNet  Google Scholar 

  19. Lau K.-S.: Dimension of a family of singular Bernoulli convolutions. J. Funct. Anal. 116, 335–358 (1993)

    Article  MathSciNet  Google Scholar 

  20. Liao L., Steiner W.: Dynamical properties of the negative beta-transformation. Ergod. Theory Dyn. Syst. 32, 1673–1690 (2012)

    Article  MathSciNet  Google Scholar 

  21. Parry W.: On the \({\beta}\)-expansions of real numbers. Acta Math. Acad. Sci. Hungar., 11, 401–416 (1960)

    Article  MathSciNet  Google Scholar 

  22. Rényi A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8, 477–493 (1957)

    Article  MathSciNet  Google Scholar 

  23. M. Rigo, Formal Languages, Automata and Numeration Systems, vol. 1: Introduction to combinatorics on words, ISTE-Wiley (2014).

    Book  Google Scholar 

  24. Schmidt K.: On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc., 12, 269–278 (1980)

    Article  MathSciNet  Google Scholar 

  25. W.P. Thurston, Groups, tilings and finite automata, Geometry Super computer Project Research Report GCG1, University of Minnesota (1989).

  26. Trivedi K.S., Ercegovac M.D.: On-line algorithms for division and multiplication. IEEE Transactions on Computers C-26, 681–687 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Frougny.

Additional information

CH. FROUGNY: The first author acknowledges support of ANR/FWF project “FAN”, grant ANR-12-IS01-0002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frougny, C., Pelantová, E. Two applications of the spectrum of numbers. Acta Math. Hungar. 156, 391–407 (2018). https://doi.org/10.1007/s10474-018-0856-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-018-0856-1

Key words and phrases

Mathematics Subject Classification

Navigation