Skip to main content
Log in

An inventory model with trade-credit policy and variable deterioration for fixed lifetime products

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The purpose of this study is two-fold. The first is to consider supplier’s and retailer’s trade-credit policy for fixed lifetime products and the second is to extend Mahata’s 2012 model with time varying deterioration where Mahata (Expert Syst Appl 39(3):3537–3550, 2012) wrote exponential deterioration but actually he considered constant deterioration. We assume that the suppliers offer full trade-credit to retailers but retailers offer partial trade-credit to their customers. Some numerical examples along with graphical representations are given to illustrate the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abad, P. L., & Jaggi, C. K. (2003). A joint approach for setting unit price and the length of the credit period for a seller when end demand is price sensitive. International Journal of Production Research, 83(2), 115–122.

    Article  Google Scholar 

  • Aggarwal, S. P., & Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46(5), 658–662.

    Article  Google Scholar 

  • Arcelus, F. J., Shah, N. H., & Srinivasan, G. (2003). Retailer’s pricing credit and inventory policies for deteriorating items in response to temporary price/credit incentives. International Journal of Production Economics, 81–82, 153–162.

    Article  Google Scholar 

  • Chang, H. J., Huang, C. H., & Dye, C. Y. (2001). An inventory model for deteriorating items with linear trend demand under the condition of permissible delay in payment. Production Planning and Control, 12(3), 274–282.

    Article  Google Scholar 

  • Chen, X., & Wang, A. (2012). Trade-credit contract with limited liability in the supply chain with budget constraints. Annals of Operations Research, 196(1), 153–165.

    Article  Google Scholar 

  • Chen, S.-C., Cárdenas-Barrón, L. E., & Teng, J. T. (2014). Retailers economic order quantity when the supplier offers conditionally permissible delay in payments link to order quantity. International Journal of Production Economics, 155, 284–291.

    Article  Google Scholar 

  • Chung, K. J. (2011). The simplified solution procedures for the optimal replenishment decisions under two-level of trade-credit policy depending on the order quantity in a supply chain system. Expert Systems with Applications, 38(10), 13482–13486.

    Article  Google Scholar 

  • Chung, K. J., & Cárdenas-Barrón, L. E. (2013). The simplified solution procedure for deteriorating items under stock-dependent demand and two-level trade-credit in the supply chain management. Applied Mathematical Modelling, 37(7), 4653–4660.

    Article  Google Scholar 

  • Chung, K. J., Cárdenas-Barrón, L. E., & Ting, P. S. (2014). An inventory model with non-instantaneous receipt and exponentially deteriorating items for an integrated three layer supply chain system under two levels of trade-credit. International Journal of Production Economics, 155, 310–317.

    Article  Google Scholar 

  • Ghare, P. M., & Schrader, G. H. (1963). A model for exponentially decaying inventory system. Journal of Industrial Engineering, 14(5), 238–243.

    Google Scholar 

  • Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of Operational Research Society, 36(4), 335–338.

    Article  Google Scholar 

  • Ho, C. H. (2011). The optimal integrated inventory policy with price-and-credit-linked demand under two-level trade credit. Computers and Industrial Engineering, 60(1), 117–126.

    Article  Google Scholar 

  • Huang, Y. F. (2006). An inventory model under two-level of trade-credit and limited storage space derived without derivatives. Applied Mathematical Modelling, 30(5), 418–436.

    Article  Google Scholar 

  • Khanra, S., Mandal, B., & Sarkar, B. (2013). An inventory model with time dependent demand and shortages under trade-credit policy. Economic Modelling, 35, 349–355.

    Article  Google Scholar 

  • Khouja, M., & Mehrez, A. (1996). Optimal inventory policy under different supplier credit policies. Journal of Manufacturing Systems, 15(5), 334–339.

    Article  Google Scholar 

  • Li, Y., Zhen, X., & Cai, X. (2014). Trade-credit insurance, capital constraint, and the behavior of manufacturers and banks. Annals of Operations Research. doi:10.1007/s10479-014-1602-x.

  • Liao, H. C., Tsai, C. H., & Su, C. T. (2000). An inventory model with deteriorating items under inflation when a delay in payment is permissible. International Journal of Production Economics, 63(2), 207–214.

    Article  Google Scholar 

  • Mahata, G. C. (2012). An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade-credit policy in supply chain. Expert Systems with Applications, 39(3), 3537–3550.

    Article  Google Scholar 

  • Manna, S. K., & Chaudhuri, K. S. (2006). An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages. European Journal of Operational Research, 171(2), 557–566.

    Article  Google Scholar 

  • Ouyang, L. Y., Yang, C. T., Chan, Y. L., & Cárdenas-Barrón, L. E. (2013). A comprehensive extension of the optimal replenishment decisions under two-level of trade-credit policy depending on the order quantity. Applied Mathematics and Computation, 224, 268–277.

    Article  Google Scholar 

  • Philip, G. C. (1974). A generalized EOQ model for items with Weibull distribution. AIIE Transactions, 6(2), 159–162.

    Article  Google Scholar 

  • Sana, S. S. (2008). A deterministic EOQ model with delay in payments and time varying deterioration rate. European Journal of Operational Research, 184(2), 509–533.

    Article  Google Scholar 

  • Sarkar, B., Sana, S. S., & Chaudhuri, K. (2010). A finite replenishment model with increasing demand under inflation. International Journal of Mathematics in Operational Research, 2(3), 347–385.

    Article  Google Scholar 

  • Sarkar, B. (2012a). An EOQ model with delay in payments and stock dependent demand in the presence of imperfect production. Applied Mathematics and Computation, 218(17), 8295–8308.

    Article  Google Scholar 

  • Sarkar, B. (2012b). An EOQ model with delay in payments and time varying deterioration rate. Mathematical and Computer Modelling, 55(3–4), 367–377.

    Article  Google Scholar 

  • Sarkar, B., Saren, S., & Wee, H. M. (2013). An inventory model with variable demand, component cost and selling price for deteriorating items. Economic Modelling, 30, 306–310.

    Article  Google Scholar 

  • Sarkar, B., & Sarkar, S. (2013a). Variable deterioration and demand-an inventory model. Economic Modelling, 31, 548–556.

    Article  Google Scholar 

  • Sarkar, B., & Sarkar, S. (2013b). An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand. Economic Modelling, 30, 924–932.

    Article  Google Scholar 

  • Sarkar, M., & Sarkar, B. (2013c). An economic manufacturing quantity model with probabilistic deterioration in a production system. Economic Modelling, 31, 245–252.

  • Sarkar, B. (2013). A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Applied Mathematical Modelling, 37(5), 3138–3151.

    Article  Google Scholar 

  • Sarkar, B., Gupta, H., Chaudhuri, K., & Goyal, S. K. (2014). An integrated inventory model with variable lead time, defective units and delay in payments. Applied Mathematics and Computation, 237, 650–658.

    Article  Google Scholar 

  • Sarker, B. R., Jamal, A. M. M., & Wang, S. (2000). Supply chain model for perishable products under inflation and permissible delay in payment. Computers and Operations Research, 27(1), 59–75.

    Article  Google Scholar 

  • Sarker, B. R., Mukherjee, S., & Balan, C. V. (1997). An order-level lot size inventory model with inventory-level dependent demand and deterioration. International Journal of Production Economics, 48(3), 227–236.

    Article  Google Scholar 

  • Sett, B. K., Sarkar, B., & Goswami, A. (2012). A two-warehouse inventory model with increasing demand and time varying deterioration. Scientia Iranica, 19(6), 1969–1977.

    Article  Google Scholar 

  • Shah, Y. K. (1977). An order-level lot size inventory model for deteriorating items. AIIE Transactions, 9(1), 108–112.

    Article  Google Scholar 

  • Shah, N. H., Soni, H. N., & Patel, K. A. (2013). Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega, 41(2), 421–430.

    Article  Google Scholar 

  • Soni, H. N. (2013). Optimal replenishment policies for deteriorating items with stock sensitive demand under two-level trade-credit and limited capacity. Applied Mathematical Modelling, 37(8), 5887–5895.

    Article  Google Scholar 

  • Skouri, K., Konstantaras, I., Manna, S. K., & Chaudhuri, K. S. (2011). Inventory models with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages. Annals of Operations Research, 191(1), 73–95.

    Article  Google Scholar 

  • Teng, J. T. (2002). On the economic order quantity under conditions of permissible delay in payments. Journal of Operational Research, 53(8), 915–918.

    Article  Google Scholar 

  • Teng, J. T. (2009). Optimal ordering policies for a retailer who offers distinct trade-credits to its good and bad credit customers. International Journal of Production Economics, 119(2), 415–423.

    Article  Google Scholar 

  • Thangam, A., & Uthaykumar, R. (2008). Analysis of partial trade-credit financing in a supply chain in EPQ-based models. Advanced Modelling and Optimization, 10, 177–198.

    Google Scholar 

  • Wu, J., Ouyang, L. Y., Cárdenas-Barrón, L. E., & Goyal, S. K. (2014). Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade-credit financing. European Journal of Operational Research, 237(3), 898–908.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their very helpful comments to improve the paper. This work was supported by the research fund of Hanyang University (HY-2014-N, Project number 201400000002202) for new Faculty members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Sarkar.

Additional information

Biswajit Sarkar is in leave on lien from Vidyasagar University.

Appendices

Appendix 1

$$\begin{aligned} x_1&= \left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) (2+2L-t_1)t_1 -\ln (1+L)\frac{(1+L)^2}{2},\\ y_1&= -\!\ln (1\!+\!L\!-\!T)\frac{(1\!+\!L\!-\!T)^2}{2}\!+\!\left( \frac{\ln (1\!+\!L\!-\!T)}{2} +\frac{1}{4}\right) (2+2L-t_1-T)(t_1-T),\\ x_2&= \left( \frac{\ln (1+L)}{2}-\frac{1}{4}\right) (2+2L-t_1-M) (t_1-M)-\ln (1+L-M)\frac{(1+L-M)^2}{2}, \end{aligned}$$

and

$$\begin{aligned} y_2&= [\!-\!(T\!-\!M)(2\!+\!2L\!-\!M\!-\!T)\left( \frac{1}{2}\!+\!\ln (1+L-T)\right) +\ln (1+L-M)(1+L-M)^2\\&\quad -\ln (1+L-T)(1+L-T)^2]. \end{aligned}$$

Appendix 2

Case 1 \(M\ge N\)

Case 1.1 \(M\le t_1\) i.e., \(M\le t_M\le T\)

$$\begin{aligned} \frac{dTRC_1(T)}{dT}=\frac{f_1(T)}{T^2} \end{aligned}$$

where

$$\begin{aligned} f_1(T)&= (h+cI_c)DT\Big [(2+2L-t_1-T)\left( \frac{(t_1-T)}{2(1+L-T)} -\frac{\ln (1+L-T)}{2}\right) \\&\quad -\,(1+L-T)-\ln (1+L-T)(t_1+1+L-2T)\Big ]\nonumber \\&\quad -\,A-h(P-D)\left[ \Big (\frac{1}{4}+\frac{\ln (1+L)}{2}\Big )(2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\right] \nonumber \\&\quad -\,\left( \frac{hP}{2}+cI_cP\right) (1+L-t_1)^2\frac{\ln (1+L-t_1)}{2}\\&\quad -\,(h+cI_c)D\Big [-(1+L-T)^2\frac{\ln (1+L-T)}{2}\nonumber \\&\quad +\,\left( \frac{\ln (1+L-T)}{2}+\frac{1}{4}\right) (2+2L-t_1-T)(t_1 -T)\Big ]\\&\quad -\,cPt_1+\frac{sI_eD}{2}(M^2-(1-\alpha )N^2)-cI_c(P-D)\Bigg [\left( \frac{\ln (1+L)}{2}-\frac{1}{4}\right) \\&\quad \times (2+2L-t_1-M)(t_1-M)- \ln (1+L-M)\frac{(1+L-M)^2}{2}\Bigg ]\\&\quad -\, cI_cD\Bigg [\Big (\frac{1}{4}+\frac{\ln (1+L-T)}{2}\Big )(2+2L-t_1-T)(T-t_1)\\&\quad +\ln (1+L-T)\frac{(1+L-T)^2}{2}\Bigg ] \end{aligned}$$

To determine the optimal value of \(T\) say \(T^*_1\), we solve the equation \(f_1(T)=0\).

We obtain \(\frac{df_1(T)}{dT}>0 ~~\hbox {if} ~~T>0\). As \(f_1(T)\) is an increasing function on \([0,\infty )\), then \(\frac{dTRC_1(T)}{dT}\) is an increasing function on \([0,\infty )\). Using Lemma, \(TRC_1(T)\) is a convex function on \([0,\infty )\).

In addition, we have as \(\lim T\rightarrow \infty \), then \(f_1(T)\rightarrow \infty \).

$$\begin{aligned} f_1(0)&= -\Big (A+h(P-D)\left[ \left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) (2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\right] \nonumber \\&\quad +\,\left( \frac{hP}{2}+cI_cP\right) \frac{(1+L-t_1)^2}{2}\ln (1+L-t_1)+hD\Bigg [-\ln (1+L)\frac{(1+L)^2}{2}\nonumber \\&\quad +\,\Big (\frac{\ln (1+L)}{2}+\frac{1}{4}\Big )(2+2L-t_1)t_1\Bigg ] -\frac{sI_eD(M^2-(1-\alpha )N^2)}{2} +cPt_1\nonumber \\&\quad +\,cI_c(P-D)\Big [\Big (\frac{\ln (1+L)}{2}-\frac{1}{4}\Big )(2+2L-t_1-M)(t_1-M)\\&\quad -\,\frac{\ln (1+L-M)}{2}(1+L-M)^2 \Big ]+\frac{cI_cP(1+L-t_1)^2}{2}\ln (1+L-t_1)\Big ) \end{aligned}$$

Then

$$\begin{aligned} \frac{dTRC_1(T)}{dT}&< 0; ~~~\hbox {if}~~~~~ T\in [0,T^*_1),\nonumber \\&= 0;~~~\hbox {if}~~~~~ T=T^*_1,\nonumber \\&> 0;~~~\hbox {if}~~~~~ T\in (T^*_1,\infty ). \end{aligned}$$

By applying the intermediate value theorem, we can state that the optimal solution \(T^*_1\) exists and is unique.

Case 1. (b) \(M\le T\le t_M\)

$$\begin{aligned} \frac{dTRC_2(T)}{dT}=\frac{f_2(T)}{T^2} \end{aligned}$$

where

$$\begin{aligned} f_2(T)&= -A-h(P-D)\left[ \left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) (2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\right] \nonumber \\&\quad -\,\frac{hP(1+L-t_1)^2}{2}\ln (1+L-t_1)+ hD\Big [\ln (1+L-T)\frac{(1+L-T)^2}{2}\nonumber \\&\quad -\,\Big (\frac{1}{4}+\frac{\ln (1+L-T)}{2}\Big )(2+2L-t_1-T)(t_1-T)\Big ]-\frac{DcI_c}{2} \Big [-(T-M)\nonumber \\&\quad \times (2+2L-M-T)\left( \frac{1}{2}+\ln (1+L-T)\right) +\ln (1+L-M)(1+L-M)^2\nonumber \\&\quad -\,(1+L-T)^2\ln (1+L-T)\Big ] +\frac{sI_eD}{2}[M^2-(1-\alpha )N^2]-cPt_1\nonumber \\&\quad +\,\frac{DcI_cT}{2} \Big [(2T+M-2L-2)-(3T-M-2L-2)\ln (1+L-T)\nonumber \\&\quad -\,(2L+2-T-M)\Big ((T-M)\frac{1}{1+L-T}+\ln (1+L-T)\Big )\Big ] \end{aligned}$$

To determine the optimal value of \(T\) say \(T^*_2\), we solve the equation \(f_2(T)=0\).

We obtain \(\frac{df_2(T)}{dT}>0,~~\hbox {if} ~~T>0.\)

As \(f_2(T)\) is an increasing function on \([0,\infty )\), then \(\frac{dTRC_2(T)}{dT}\) is an increasing function on \([0,\infty )\). Using Lemma, \(TRC_2(T)\) is a convex function on \([0,\infty )\).

In addition, we obtain as \(\lim T\rightarrow \infty \), then \(f_2(T)\rightarrow \infty \).

$$\begin{aligned} f_2(0)&= -\Big (A+h(P-D)\left[ \left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) (2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\right] \nonumber \\&\quad +\,\frac{hP(1+L-t_1)^2}{2}\ln (1+L-t_1)- hD\Big [\ln (1+L)\frac{(1+L)^2}{2}-\Big (\frac{\ln (1+L)}{2}\nonumber \\&\quad -\,\frac{1}{4}\Big )(2+2L-t_1)t_1\Big ]+\frac{DcI_c}{2} \Big [M(2+2L-M)\left( \frac{1}{2}+\ln (1+L)\right) +(1+L\nonumber \\&\quad -\,M)^2\ln (1+L-M)-\ln (1+L)(1+L)^2\Big ] -\frac{sI_eD}{2}[M^2-(1-\alpha )N^2]\nonumber \\&\quad +\,cPt_1\Big ) \end{aligned}$$

Then

$$\begin{aligned} \frac{dTRC_2(T)}{dT}&< 0; ~~~\hbox {if}~~ T\in [0,T^*_2),\nonumber \\&= 0;~~~\hbox {if}~~ T=T^*_2,\nonumber \\&> 0;~~~\hbox {if}~~ T\in (T^*_2,\infty ). \end{aligned}$$

Using intermediate value theorem, we can say that a unique optimal solution \(T^*_2\) exists.

Case 1. (c) \(N\le T\le M\)

$$\begin{aligned} \frac{dTRC_3(T)}{dT}=\frac{f_3(T)}{T^2} \end{aligned}$$

where

$$\begin{aligned} f_3(T)&= hDT\Big [(2+2L-t_1-T)\left( \frac{(t_1-T)}{2(1+L-T)}-\frac{\ln (1+L-T)}{2}\right) -(1+L-T)\nonumber \\&\quad -\,\ln (1+L-T)(t_1+1+L-2T)\Big ] -A-h(P-D)\Big [\left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) \nonumber \\&\quad (2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\Big ] -\frac{hP(1+L-t_1)^2}{2}\ln (1+L-t_1) \nonumber \\&\quad -hD\Big [\!-\ln (1\!+\!L\!-\!T)\frac{(1\!+\!L\!-\!T)^2}{2}\!+\!\left( \frac{\ln (1+L-T)}{2} +\frac{1}{4}\right) (2+2L-t_1-T) \nonumber \\&\quad (t_1-T)\Big ] -\frac{sI_eD}{2}(1-\alpha )N^2+\frac{sI_eDT^2}{2}-cPt_1 \end{aligned}$$

To determine the optimal value of \(T\) say \(T^*_3\), we solve the equation \(f_3(T)=0.\)

We obtain \(\frac{df_3(T)}{dT}>0 ~~\hbox {if}~~T>0.\)

As \(f_3(T)\) is an increasing function on \([0,\infty )\), then \(\frac{dTRC_3(T)}{dT}\) is an increasing function on \([0,\infty )\). Using the statement of Lemma, \(TRC_3(T)\) is a convex function on \([0,\infty )\).

In addition, we find as \(\lim T\rightarrow \infty \), then \(f_3(T)\rightarrow \infty \).

Now

$$\begin{aligned} f_3(0)&= -\Big (A+h(P-D)\Big [\left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) (2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\Big ] \nonumber \\&\quad +\,\frac{hP(1+L-t_1)^2}{2}\ln (1+L-t_1)+hD\Big [-\ln (1+L)\frac{(1+L)^2}{2}+\Big (\frac{\ln (1+L)}{2} \nonumber \\&\quad +\,\frac{1}{4}\Big )(2+2L-t_1)t_1\Big ]+\frac{sI_eD}{2}(1-\alpha )N^2+cPt_1\Big ) \end{aligned}$$

Then

$$\begin{aligned} \frac{dTRC_3(T)}{dT}&< 0; ~~~~\hbox {if}~~~~ T\in [0,T^*_3),\nonumber \\&= 0;~~~~\hbox {if}~~~~ T=T^*_3,\nonumber \\&> 0;~~~~\hbox {if}~~~~ T\in (T^*_3,\infty ) \end{aligned}$$

Again using the intermediate value theorem, we conclude that a unique optimal solution \(T^*_3\) exists.

Case 1. (d) \(0<T\le N\)

$$\begin{aligned} \frac{dTRC_4(T)}{dT}=\frac{f_4(T)}{T^2} \end{aligned}$$

where

$$\begin{aligned} f_4(T)&= hDT\Big [(2+2L-t_1-T)\left( \frac{(t_1-T)}{2(1+L-T)}-\frac{\ln (1+L-T)}{2}\right) -(1+L-T)\nonumber \\&\quad -\,\ln (1+L-T)(t_1+1+L-2T)\Big ] -A-h(P-D)\Big [\left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) \nonumber \\&\quad (2+\,2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\Big ] \!-\!\frac{hP(1\!+\!L\!-\!t_1)^2}{2}\ln (1+L-t_1)\!-\!hD \nonumber \\&\quad \Big [-\,\ln (1+L-T)\frac{(1+L-T)^2}{2}+\left( \frac{\ln (1+L-T)}{2} +\frac{1}{4}\right) (2+2L-t_1-T) \nonumber \\&\quad (t_1-\,T)\Big ]+\frac{sI_eD\alpha T^2}{2}-cPt_1 \end{aligned}$$

To determine the optimal value of \(T\) say \(T^*_4\), we solve the equation \(f_4(T)=0\).

We obtain \(\frac{df_4(T)}{dT}>0 ~~\hbox {if}~~ T>0.\)

As \(f_4(T)\) is an increasing function on \([0,\infty )\), then \(\frac{dTRC_4(T)}{dT}\) is an increasing function on \([0,\infty )\). Using the Lemma, \(TRC_4(T)\) is a convex function on \([0,\infty )\).

In addition, we know as \(\lim T\rightarrow \infty \), then \(f_4(T)\rightarrow \infty \).

$$\begin{aligned} f_4(0)&= -\Big (A+h(P-D)\Big [\left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) (2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\Big ] \nonumber \\&\quad +\,\frac{hP(1+L-t_1)^2}{2}\ln (1+L-t_1)+hD\Big [-\ln (1+L)\frac{(1+L)^2}{2}+\Big (\frac{\ln (1+L)}{2} \nonumber \\&\quad +\,\frac{1}{4}\Big )(2+2L-t_1)t_1\Big ]+cPt_1\Big ) \end{aligned}$$

Then

$$\begin{aligned} \frac{dTRC_4(T)}{dT}&< 0; ~~~\hbox {if} ~~T\in [0,T^*_4),\nonumber \\&= 0;~~~\hbox {if}~~ T=T^*_4,\nonumber \\&> 0;~~~\hbox {if}~~ T\in (T^*_4,\infty ) \end{aligned}$$

Using the intermediate value theorem, we can say that a unique optimal solution \(T^*_4\) exists.

Case 2 \(M<N\)

Case 2. (a) \(T\ge t_M\)

$$\begin{aligned} \frac{dTRC_5(T)}{dT}=\frac{f_5(T)}{T^2} \end{aligned}$$

where

$$\begin{aligned} f_5(T)&= (h+cI_c)DT\Big [(2+2L-t_1-T)\left( \frac{(t_1-T)}{2(1+L-T)} -\frac{\ln (1+L-T)}{2}\right) \nonumber \\&\quad -\,(1+L-T)-\ln (1+L-T)(t_1+1+L-2T)\Big ] -A-h(P-D)\nonumber \\&\quad \Big [\Big (\frac{1}{4}+\,\frac{\ln (1+L)}{2}\Big )(2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\Big ] -\Big (\frac{hP}{2}+cI_cP\Big )\nonumber \\&\quad (1+\,L-t_1)^2 \frac{\ln (1+L-t_1)}{2}-(h+cI_c)D\Big [ -\ln (1+L-T)\frac{(1+L-T)^2}{2}\nonumber \\&\quad +\,\left( \frac{\ln (1+L-T)}{2}+\frac{1}{4}\right) (2+2L-t_1-T)(t_1 -T)\Big ]+\frac{sI_eD\alpha M^2}{2}-cPt_1\nonumber \\&\quad -\,cI_c(P-D)\Big [\Big (-\frac{1}{4}+\frac{ \ln (1+L)}{2}\Big )(2+2L-t_1-M)(t_1-M)\nonumber \\&\quad -\, \ln (1+L-M)\frac{(1+L-M)^2}{2}\Big ]- cI_cD\Big [\Big (\frac{1}{4}+\frac{\ln (1+L-T)}{2}\Big )\nonumber \\&\quad (2+\,2L-t_1-T)(T-t_1)+\ln (1+L-T)\frac{(1+L-T)^2}{2}\Big ] \end{aligned}$$

To determine the optimal value of \(T\) say \(T^*_5\), we solve the equation \(f_5(T)=0\).

We obtain \(\frac{df_5(T)}{dT}>0 ~~\hbox {if} ~~T>0\). As \(f_5(T)\) is an increasing function on \([0,\infty )\), then \(\frac{dTRC_5(T)}{dT}\) is an increasing function on \([0,\infty )\). Using Lemma, \(TRC_5(T)\) is a convex function on \([0,\infty )\).

In addition, we obtain as \(\lim T\rightarrow \infty \), then \(f_5(T)\rightarrow \infty \).

$$\begin{aligned} f_5(0)&= -\Big (A+h(P-D)\Big [\left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) (2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\Big ]\\&\quad +\,\left( \frac{hP}{2}+cI_cP\right) \frac{(1+L-t_1)^2}{2}\ln (1+L-t_1)+hD\Big [-\ln (1+L)\frac{(1+L)^2}{2}\\&\quad +\,\Big (\frac{\ln (1+L)}{2}+\frac{1}{4}\Big )(2+2L{-}t_1)t_1\Big ]{-}\frac{sI_eD\alpha M^2}{2} +cPt_1+cI_c(P-D)\Big [\Big ({-}\frac{1}{4}\\&\quad +\,\frac{\ln (1+L)}{2}\Big ) (2+2L-t_1-M)(t_1-M)- \ln (1+L-M)\frac{(1+L-M)^2}{2}\Big ]\Big ) \end{aligned}$$

Then

$$\begin{aligned} \frac{dTRC_5(T)}{dT}&< 0;\quad ~~~\hbox {if}~~~~~ T\in [0,T^*_5),\\&= 0;~~~\quad \hbox {if}~~~~~ T=T^*_5,\\&> 0;~~~\quad \hbox {if}~~~~~ T\in (T^*_5,\infty ) \end{aligned}$$

Using the intermediate value theorem, we can state that a unique optimal solution \(T^*_5\) exists.

Case 2. (b) \(M\le T\le t_M\)

$$\begin{aligned} \frac{dTRC_6(T)}{dT}=\frac{f_6(T)}{T^2} \end{aligned}$$

where

$$\begin{aligned} f_6(T)&= -\Big (A+h(P-D)\left[ \left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) (2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\right] \nonumber \\&\quad +\,\frac{hP(1+L-t_1)^2}{2}\ln (1+L-t_1)- hD\Big [\ln (1+L-T)\frac{(1+L-T)^2}{2}-\Big (\frac{1}{4}\nonumber \\&\quad +\,\frac{\ln (1+L-T)}{2}\Big )(2+2L-t_1-T)(t_1-T)\Big ]+\frac{DcI_c}{2} \Big [-(T-M)(2+2L\nonumber \\&\quad -\,M-T)\left( \frac{1}{2}+\ln (1+L-T)\right) +\ln (1+L-M)(1+L-M)^2\nonumber \\&\quad -\,(1+L-T)^2\ln (1+L-T)\Big ] -\frac{sI_eDM^2\alpha }{2}+cPt_1-\frac{DcI_cT}{2} \Big [(2T+M\nonumber \\&\quad -\,2L-2)-(3T-M-2L-2)\ln (1+L-T)-(2L+2-T-M)\Big ((T\nonumber \\&\quad -\,M)\frac{1}{1+L-T}+\ln (1+L-T)\Big )\Big ]\Big ) \end{aligned}$$

To determine the optimal value of \(T\) say \(T^*_6\), we solve the equation \(f_6(T)=0\).

We obtain \(\frac{df_6(T)}{dT}>0 ~~\hbox {if} ~~T>0.\)

As \(f_6(T)\) is an increasing function on \([0,\infty )\), then \(\frac{dTRC_6(T)}{dT}\) is an increasing function on \([0,\infty )\). Using Lemma, \(TRC_6(T)\) is a convex function on \([0,\infty )\).

In addition, we find as \(\lim T\rightarrow \infty \), then \(f_6(T)\rightarrow \infty \).

$$\begin{aligned} f_6(0)&= -A-h(P-D)\left[ \left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) (2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\right] \\&\quad -\,\frac{hP(1+L-t_1)^2}{2}\ln (1+L-t_1)+ hD\Big [\ln (1+L)\frac{(1+L)^2}{2}-\Big (\frac{\ln (1+L)}{2}\\&\quad -\,\frac{1}{4}\Big )(2+2L-t_1)t_1\Big ]-\frac{DcI_c}{2} \Big [M(2+2L-M)\left( \frac{1}{2}+\ln (1+L)\right) \\&\quad +\,(1+L-M)^2\ln (1+L-M)-\ln (1+L)(1+L)^2\Big ] +\frac{sI_eDM^2\alpha }{2}-cPt_1 \end{aligned}$$

Then

$$\begin{aligned} \frac{dTRC_6(T)}{dT}&< 0; ~~~\hbox {if}~~ T\in [0,T^*_6),\\&= 0;~~~\hbox {if}~~ T=T^*_6,\\&> 0;~~~\hbox {if}~~ T\in (T^*_6,\infty ) \end{aligned}$$

Using the intermediate value theorem, we can state that a unique optimal solution \(T^*_6\) exists.

Case 2. (c) \(0<T\le M\)

$$\begin{aligned} \frac{dTRC_7(T)}{dT}=\frac{f_7(T)}{T^2} \end{aligned}$$

where

$$\begin{aligned} f_7(T)&= hDT\Big [(2+2L-t_1-T)\left( \frac{(t_1-T)}{2(1+L-T)} -\frac{\ln (1+L-T)}{2}\right) -(1+L-T)\nonumber \\&\quad -\,\ln (1+L-T)(t_1+1+L-2T)\Big ] -A-h(P-D)\Big [\left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) \\&\quad (2+2L-t_1)t_1\!-\!\ln (1+L)\frac{(1+L)^2}{2}\Big ] \!-\!\frac{hP(1+L-t_1)^2}{2}\ln (1+L-t_1)\!-\!hD\\&\quad \Big [-\ln (1\!+L\!-T)\frac{(1\!+L\!-T)^2}{2}\!+\!\left( \frac{\ln (1+L-T)}{2} +\frac{1}{4}\right) (2+2L-t_1-T)(t_1\\&\quad -\,T)\Big ]+\frac{sI_eDT^2\alpha }{2}-cPt_1 \end{aligned}$$

To determine the optimal value of \(T\) say \(T^*_7\), we solve the equation \(f_7(T)=0.\)

We obtain \(\frac{df_7(T)}{dT}>0, ~~\hbox {if}~~T>0.\)

As \(f_7(T)\) is an increasing function on \([0,\infty )\), then \(\frac{dTRC_7(T)}{dT}\) is an increasing function on \([0,\infty )\). Using the Lemma, \(TRC_7(T)\) is a convex function on \([0,\infty )\).

In addition, as \(\lim T\rightarrow \infty \), then \(f_7(T)\rightarrow \infty \).

Now

$$\begin{aligned} f_7(0)&= -\Big (A+h(P-D)\Big [\left( \frac{\ln (1+L)}{2}+\frac{1}{4}\right) (2+2L-t_1)t_1-\ln (1+L)\frac{(1+L)^2}{2}\Big ]\\&\quad +\,\frac{hP(1+L-t_1)^2}{2}\ln (1+L-t_1)+hD\Big [-\ln (1+L)\frac{(1+L)^2}{2}+\Big (\frac{\ln (1+L)}{2}\\&\quad +\,\frac{1}{4}\Big )(2+2L-t_1)t_1\Big ]+cPt_1\Big ) \end{aligned}$$

Then

$$\begin{aligned} \frac{dTRC_7(T)}{dT}&< 0; ~~~~\hbox {if}~~~~ T\in [0,T^*_7),\\&= 0;~~~~\hbox {if}~~~~ T=T^*_7,\\&> 0;~~~~\hbox {if}~~~~ T\in (T^*_7,\infty ) \end{aligned}$$

Using the intermediate value theorem, we can state that a unique optimal solution \(T^*_7\) exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, B., Saren, S. & Cárdenas-Barrón, L.E. An inventory model with trade-credit policy and variable deterioration for fixed lifetime products. Ann Oper Res 229, 677–702 (2015). https://doi.org/10.1007/s10479-014-1745-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1745-9

Keywords

Navigation