Skip to main content
Log in

Multiple criteria hierarchy process for sorting problems based on ordinal regression with additive value functions

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A hierarchical decomposition is a common approach for coping with complex decision problems involving multiple dimensions. Recently, the multiple criteria hierarchy process (MCHP) has been introduced as a new general framework for dealing with multiple criteria decision aiding in case of a hierarchical structure of the family of evaluation criteria. This study applies the MCHP framework to multiple criteria sorting problems and extends existing disaggregation and robust ordinal regression techniques that induce decision models from data. The new methodology allows the handling of preference information and the formulation of recommendations at the comprehensive level, as well as at all intermediate levels of the hierarchy of criteria. A case study on bank performance rating is used to illustrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For some banks the data were not available for all years.

    The data are available at: http://www.fel.tuc.gr/BankData.xlsx

  2. Because \(\varepsilon \le \min _{j=1,\ldots ,n(\mathbf {r})}n(\mathbf {r})\left[ b_{h}^{(\mathbf {r},j)}-b_{h-1}^{(\mathbf {r},j)}\right] \).

  3. Because \(\varepsilon \le \sum _{j=1}^{n(\mathbf {r})}b_{h}^{(\mathbf {r},j)}-b_{h}^{\mathbf {r}}\) and, consequently \(\sum _{j=1}^{n(\mathbf {r})}b^{(\mathbf {r},j)}_{h}-\varepsilon >b_{h}^{\mathbf {r}}\).

References

  • Angilella, S., Corrente, S., Greco, S., & Słowiński, R. (2013). Multiple criteria hierarchy process for the Choquet integral. In R. C. Purshouse, P. J. Fleming, C. M. Fonseca, S. Greco, & J. Shaw, (Eds.), Evolutionary multi-criterion optimization, volume 7811 of lecture notes in computer science (pp. 475–489). Berlin: Springer.

  • Bana e Costa, C. A., & Jean-Claude Vansnick,. (2008). A critical analysis of the eigenvalue method used to derive priorities in AHP. European Journal of Operational Research, 187(3), 1422–1428.

  • Bouyssou, D., & Marchant, T. (2010). Additive conjoint measurement with ordered categories. European Journal of Operational Research, 203(1), 195–204.

    Article  Google Scholar 

  • Comptroller of the Currency Administrator of National Banks. Bank supervision process. Available at: http://www.occ.gov/publications/publications-by-type/comptrollers-handbook/banksupervisionprocess.html, 2007

  • Corrente, S., Greco, S., Kadziński, M., & Słowiński, R. (2014). Robust ordinal regression. Wiley Encyclopedia of Operations Research and Management Science (pp. 1–10).

  • Corrente, S., Figueira, J. R., & Greco, S. (2014). Dealing with interaction between bipolar multiple criteria preferences in PROMETHEE methods. Annals of Operations Research, 217, 137–164.

    Article  Google Scholar 

  • Corrente, S., Greco, S., Kadziński, M., & Słowiński, R. (2013). Robust ordinal regression in preference learning and ranking. Machine Learning, 93, 381–422.

    Article  Google Scholar 

  • Corrente, S., Greco, S., & Słowiński, R. (2012). Multiple criteria hierarchy process in robust ordinal regression. Decision Support Systems, 53(3), 660–674.

    Article  Google Scholar 

  • Corrente, S., Greco, S., & Słowiński, R. (2013). Multiple criteria hierarchy process with ELECTRE and PROMETHEE. Omega, 41, 820–846.

    Article  Google Scholar 

  • Devaud, J. M., Groussaud, G., & Jacquet-Lagréze, E. (1980). Une méthode de construction de fonctions d’utilité additives rendant compte de judgments globaux. In Proceedings of EURO Working Group Meeting on Multicriteria Decision Aiding, Bochum.

  • Doumpos, M., & Zopounidis, C. (2002). Multicriteria decision aid classification methods. New York: Springer.

    Google Scholar 

  • Doumpos, M., & Zopounidis, C. (2010). A multicriteria decision support system for bank rating. Decision Support Systems, 50(1), 55–63.

    Article  Google Scholar 

  • Doumpos, M., Zopounidis, C., & Galariotis, E. (2014). Inferring robust decision models in multicriteria classification problems: An experimental analysis. European Journal of Operational Research, 236, 601–611.

    Article  Google Scholar 

  • Grabisch, M., & Labreuche, C. (2010). A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Annals of Operations Research, 1(175), 247–286.

    Article  Google Scholar 

  • Greco, S., Kadziński, M., & Słowiński, R. (2011). Selection of a representative value function in robust multiple criteria sorting. Computers & Operations Research, 38, 1620–1637.

    Article  Google Scholar 

  • Greco, S., Matarazzo, B., & Słowiński, R. (1999). The use of rough sets and fuzzy sets in MCDM. In T. Gal, T. Stewart, & T. Hanne, (Eds.), Advances in multiple criteria decision making, chapter 14 (pp. 14.1–14.59). Dordrecht: Kluwer Academic.

  • Greco, S., Matarazzo, B., & Słowiński, R. (2001). Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129(1), 1–47.

    Article  Google Scholar 

  • Greco, S., Matarazzo, B., & Słowiński, R. (2002). Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research, 138(2), 247–259.

    Article  Google Scholar 

  • Greco, S., Matarazzo, B., & Słowiński, R. (2010). Dominance-based rough set approach to decision under uncertainty and time preference. Annals of Operations Research, 176(1), 41–75.

    Article  Google Scholar 

  • Greco, S., Mousseau, V., & Słowiński, R. (2008). Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. European Journal of Operational Research, 191(2), 416–436.

    Article  Google Scholar 

  • Greco, S., Mousseau, V., & Słowiński, R. (2010). Multiple criteria sorting with a set of additive value functions. European Journal of Operational Research, 207(3), 1455–1470.

    Article  Google Scholar 

  • Jacquet-Lagrèze, E., & Siskos, Y. (2001). Preference disaggregation: 20 years of MCDA experience. European Journal of Operational Research, 130(2), 233–245.

    Article  Google Scholar 

  • Kadziński, M., & Tervonen, T. (2013). Stochastic ordinal regression for multiple criteria sorting problems. Decision Support Systems, 55(11), 55–66.

    Article  Google Scholar 

  • Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: Preferences and value tradeoffs. New York: Wiley.

    Book  Google Scholar 

  • Saaty, T. L. (2005). The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple criteria decision analysis: State of the art surveys (pp. 345–382). Berlin: Springer.

    Chapter  Google Scholar 

  • Sahajwala, R., & Van den Bergh, P. (December 2000). Supervisory risk assessment and early warning systems. Technical Report 4, Bank of International Settlements, Basel.

  • Słowiński, R., Greco, S., & Matarazzo, B. (2002). Rough set analysis of preference-ordered data. In J. J Alpigini, J. F. Peters, A. Skowron, & N. Zhong, (Eds.), Rough sets and current trends in computing, volume 2475 of lecture notes in artificial intelligence (pp. 44–59). Berlin: Springer.

  • Słowiński, R., Stefanowski, J., Greco, S., & Matarazzo, B. (2000). Rough set based processing of inconsistent information in decision analysis. Control and Cybernetics, 29, 379–404.

    Google Scholar 

  • van Greuning, H., & Brajovic Bratanovic, S. (2009). Analyzing banking risk—a framework for assessing corporate governance and risk management (3rd ed.). Washington, DC: The World Bank.

    Book  Google Scholar 

  • Wakker, P. P. (1989). Additive representations of preferences: A new foundation of decision analysis, volume 4 of Theory and Decision Library C. Berlin: Springer.

    Book  Google Scholar 

  • Yu, W. (1992). Aide multicritère à la décision dans le cadre de la problématique du tri: méthodes et applications. Ph.D. thesis, LAMSADE, Université Paris Dauphine, Paris.

  • Zopounidis, C., & Doumpos, M. (1999). A multicriteria decision aid methodology for sorting decision problems: The case of financial distress. Computational Economics, 14, 197–218.

    Article  Google Scholar 

  • Zopounidis, C., & Doumpos, M. (2002). Multicriteria classification and sorting methods: A literature review. European Journal of Operational Research, 138, 229–246.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly funded by the “Programma Operativo Nazionale” Ricerca & Competitivitá “2007–2013” within the project “PON04a2 E SINERGREEN-RES-NOVAE”.

The fourth author wishes to acknowledge financial support from the Polish National Science Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Doumpos.

Appendices

Appendix

Proof of Proposition 3.1

\((1)\Rightarrow (2)\) Let \(a\xrightarrow [{(\mathbf {r},j)}]{}\left[ C_{h_j},C_{k_j}\right] \) for all \(j=1,\ldots ,n(\mathbf {r})\). This means that \(b_{h_j-1}^{(\mathbf {r},j)}\le U_{(\mathbf {r},j)}(a)<b_{k_j}^{(\mathbf {r},j)}\) for all \(j=1,\ldots ,n(\mathbf {r})\). Let us consider \(h=\min _{j=1,\ldots ,n(\mathbf {r})}h_j\) and \(k=\max _{j=1,\ldots ,n(\mathbf {r})}k_j\). For the monotonicity of the thresholds, we shall have for all \(j=1,\ldots ,n(\mathbf {r})\) that \(b_{h-1}^{(\mathbf {r},j)}\le b_{h_j-1}^{(\mathbf {r},j)}\le U_{(\mathbf {r},j)}(a)<b_{k_j}^{(\mathbf {r},j)}\le b_{k}^{(\mathbf {r},j)}\) for all \(j=1,\ldots ,n(\mathbf {r})\) and, consequently, \(b_{h-1}^{(\mathbf {r},j)}\le U_{(\mathbf {r},j)}(a)< b_{k}^{(\mathbf {r},j)}\). Adding up with respect to j, we get

$$\begin{aligned} b^{\mathbf {r}}_{h-1}=\sum _{j=1}^{n(\mathbf {r})}b_{h-1}^{(\mathbf {r},j)}\le \sum _{j=1}^{n(\mathbf {r})}U_{(\mathbf {r},j)}(a)<\sum _{j=1}^{n(\mathbf {r})}b_{k}^{(\mathbf {r},j)}=b_{k}^{\mathbf {r}}. \end{aligned}$$

From Eq. (1), it follows that \(b^{\mathbf {r}}_{h-1}\le U_{\mathbf {r}}(a)<b_{k}^{\mathbf {r}}\) and, consequently, \(a\xrightarrow [\mathbf {r}]{}\left[ C_{h},C_k\right] \).

\((2)\Rightarrow (3)\) follows directly by setting \(h_{j}=k_{j}=h\) for all \(j=1,\ldots ,n(\mathbf {r})\).

\((3)\Rightarrow (1)\) follows by contradiction, when we suppose that \(b_h^{\mathbf {r}}\ne \sum _{j=1}^{n(\mathbf {r})}b_{h}^{(\mathbf {r},j)}\) for some h. This implies that \(b_h^{\mathbf {r}}>\sum _{j=1}^{n(\mathbf {r})}b_{h}^{(\mathbf {r},j)}\) or \(b_h^{\mathbf {r}}<\sum _{j=1}^{n(\mathbf {r})}b_{h}^{(\mathbf {r},j)}\).

Let \(b_h^{\mathbf {r}}>\sum _{j=1}^{n(\mathbf {r})}b_{h}^{(\mathbf {r},j)}\) and \(a\in A\) an alternative, such that

$$\begin{aligned} U_{(\mathbf {r},j)}(a)=b_{h}^{(\mathbf {r},j)} \;\;\text{ for } \text{ all }\;\; j=1,\ldots ,n(\mathbf {r}). \end{aligned}$$
(11)

Obviously, this implies that \(a\xrightarrow [(\mathbf {r},j)]{}C_{h+1}\) for all \(j=1,\ldots ,n(\mathbf {r})\). Adding up with respect to j in the two members of Eq. (11), we get \(U_{\mathbf {r}}(a)=\sum _{j=1}^{n(\mathbf {r})}U_{(\mathbf {r},j)}(a)=\sum _{j=1}^{n(\mathbf {r})}b_{h}^{(\mathbf {r},j)}<b_{h}^{\mathbf {r}}\) and, consequently, \(a\xrightarrow [\mathbf {r}]{}C_{\le h}\), being in contradiction with the hypothesis.

Now, let \(b_h^{\mathbf {r}}<\sum _{j=1}^{n(\mathbf {r})}b_{h}^{(\mathbf {r},j)}\) and \(a\in A\) an alternative, such that

$$\begin{aligned} U_{(\mathbf {r},j)}(a)=b_{h}^{(\mathbf {r},j)}-\frac{\varepsilon }{n(\mathbf {r})} \;\;\text{ for } \text{ all }\;\; j=1,\ldots ,n(\mathbf {r}) \end{aligned}$$
(12)

where \(\varepsilon >0\). This choice implies that \(a\xrightarrow [\mathbf {(r,j)}]{}C_{\le h}\), for all \(j=1,\ldots ,n(\mathbf {r})\). Now, adding up with respect to j in the two members of Eq. (12), we get \(U_{\mathbf {r}}(a)=\sum _{j=1}^{n(\mathbf {r})}U_{(\mathbf {r},j)}(a)=\sum _{j=1}^{n(\mathbf {r})}\left[ b^{(\mathbf {r},j)}_{h}-\frac{\varepsilon }{n(\mathbf {r})}\right] =\sum _{j=1}^{n(\mathbf {r})}b^{(\mathbf {r},j)}_{h}-\varepsilon .\) If we choose \(\varepsilon \) such that

$$\begin{aligned} 0<\varepsilon \le \min \left\{ \min \left\{ n(\mathbf {r})\cdot \left[ b_{h}^{(\mathbf {r},j)}-b_{h-1}^{(\mathbf {r},j)}\right] ,\; {j=1,\ldots ,n(\mathbf {r})}\right\} ,\sum _{j=1}^{n(\mathbf {r})}b_{h}^{(\mathbf {r},j)}-b_{h}^{\mathbf {r}}\right\} \end{aligned}$$

we obtain that \(b_{h-1}^{(\mathbf {r},j)}\le U_{(\mathbf {r},j)}(a)<b_{h}^{(\mathbf {r},j)}\) for all \(j=1,\ldots ,n(\mathbf {r})\) Footnote 2 and \(U_{\mathbf {r}}(a)>b_{h}^{\mathbf {r}}\) Footnote 3 implying that \(a\xrightarrow [(\mathbf {r},j)]{}C_{h}\) for all \(j=1,\ldots ,n(\mathbf {r})\) and \(a\xrightarrow [\mathbf {r}]{}C_{\ge h+1}\), thus leading to a contradiction. \(\square \)

Proof of Proposition 4.1

  1. 1.

    Let \(a\in A\), \(\mathbf {r}\in \mathcal{I}_\mathcal{G}{\setminus } EL\) and \(h=2,\ldots ,p\) such that not\(\left( a\xrightarrow [\mathbf {r}]{N}C_{\ge h}\right) \). This means that there exists at least one (Ub) such that \(U_{\mathbf {r}}(a)<b_{h-1}^{\mathbf {r}}\). Therefore \(a\xrightarrow [\mathbf {r}]{P}C_{\le h-1}\). Let us observe that \(a\xrightarrow [\mathbf {r}]{N}C_{\ge h}\) and \(a\xrightarrow [\mathbf {r}]{P}C_{\le h-1}\) do not hold simultaneously because, otherwise, a couple \((\overline{U},\overline{b})\) should exist, such that \(\overline{U}_{\mathbf {r}}(a)\ge \overline{b}_{h-1}^{\mathbf {r}}\) and \(\overline{U}_{\mathbf {r}}(a)<\overline{b}_{h-1}^{\mathbf {r}}\), which is impossible.

  2. 2.

    Let \(a\in A\), \(\mathbf {r}\in \mathcal{I}_\mathcal{G}{\setminus } EL\) and \(k=1,\ldots ,p-1\) such that not\(\left( a\xrightarrow [\mathbf {r}]{N}C_{\le k}\right) \). This means that there exists at least one (Ub) such that \(U_{\mathbf {r}}(a)\ge b_{k}^{\mathbf {r}}\). Therefore \(a\xrightarrow [\mathbf {r}]{P}C_{\ge k+1}\). Let us observe that \(a\xrightarrow [\mathbf {r}]{N}C_{\le k}\) and \(a\xrightarrow [\mathbf {r}]{P}C_{\ge k+1}\) do not hold simultaneously because, otherwise, a couple \((\overline{U},\overline{b})\) should exist, such that \(\overline{U}_{\mathbf {r}}(a)<\overline{b}_{k}^{\mathbf {r}}\) and \(\overline{U}_{\mathbf {r}}(a)\ge \overline{b}_{k}^{\mathbf {r}}\), which is impossible.

  3. 3.

    \(a\xrightarrow [(\mathbf {r},j)]{N}C_{\ge h_{j}}\) for all \(j=1,\ldots ,n(\mathbf {r})\) implies that \(U_{(\mathbf {r},j)}(a)\ge b_{h_j-1}^{(\mathbf {r},j)}\) for all (Ub) and for all \(j=1,\ldots ,n(\mathbf {r})\). Considering \(h=\min _{j=1,\ldots ,n(\mathbf {r})}h_j\), for the monotonicity of the thresholds we have that \(U_{(\mathbf {r},j)}(a)\ge b_{h-1}^{(\mathbf {r},j)}\) for all (Ub) and for all j. As a consequence, adding up with respect to j, we get \(U_{\mathbf {r}}(a)=\sum _{j=1}^{n(\mathbf {r})}U_{(\mathbf {r},j)}(a)\ge \sum _{j=1}^{n(\mathbf {r})}b^{(\mathbf {r},j)}_{h-1}=b_{h-1}^{\mathbf {r}}\) for all (Ub), which proves point 2.

  4. 4.

    \(a\xrightarrow [(\mathbf {r},j)]{N}C_{\le k_{j}}\) for all \(j=1,\ldots ,n(\mathbf {r})\) implies that \(U_{(\mathbf {r},j)}(a)<b_{k_j}^{(\mathbf {r},j)}\) for all (Ub) and for all \(j=1,\ldots ,n(\mathbf {r})\). Considering \(k=\max _{j=1,\ldots ,n(\mathbf {r})}k_j\), for the monotonicity of the thresholds we have that \(U_{(\mathbf {r},j)}(a)<b_{k}^{(\mathbf {r},j)}\) for all (Ub) and for all j. As a consequence, adding up with respect to j, we get \(U_{\mathbf {r}}(a)=\sum _{j=1}^{n(\mathbf {r})}U_{(\mathbf {r},j)}(a)<\sum _{j=1}^{n(\mathbf {r})}b^{(\mathbf {r},j)}_{k}=b_{k}^{\mathbf {r}}\) for all (Ub), which implies point 3.

  5. 5.

    \(a\xrightarrow [(\mathbf {r},j)]{N}C_{\ge h_{j}}\), for all \(j\in \left\{ 1,\ldots ,n(\mathbf {r})\right\} {\setminus } \left\{ \overline{j}\right\} \) implies that for all (Ub), \(U_{(\mathbf {r},j)}(a)\ge b^{(\mathbf {r},j)}_{h_j-1}\) for all \(j\in \left\{ 1,\ldots ,n(\mathbf {r})\right\} {\setminus } \left\{ \overline{j}\right\} \). Analogously, \(a\xrightarrow [(\mathbf {r},\overline{j})]{P}C_{\ge h_{\overline{j}}}\) implies that there exists at least one \((\overline{U},\overline{b})\) such that \(\overline{U}_{(\mathbf {r},\overline{j})}(a)\ge \overline{b}^{(\mathbf {r},\overline{j})}_{h_{\overline{j}}-1}\). Considering \(h=\min _{j=1,\ldots ,n(\mathbf {r})} h_j\), for \((\overline{U},\overline{b})\) and for the monotonicity of the thresholds we have that \(\overline{U}_{(\mathbf {r},j)}(a)\ge \overline{b}^{(\mathbf {r},j)}_{h-1}\) for all \(j=1,\ldots ,n(\mathbf {r})\). Adding up with respect to j we get \(\overline{U}_{\mathbf {r}}(a)=\sum _{j=1}^{n(\mathbf {r})}\overline{U}_{(\mathbf {r},j)}(a)\ge \sum _{j=1}^{n(\mathbf {r})}\overline{b}^{(\mathbf {r},j)}_{h-1}=\overline{b}^{\mathbf {r}}_{h-1}\), which proves point 4.

  6. 6.

    \(a\xrightarrow [(\mathbf {r},j)]{N}C_{\le k_{j}}\), for all \(j\in \left\{ 1,\ldots ,n(\mathbf {r})\right\} {\setminus } \left\{ \overline{j}\right\} \) implies that for all (Ub), \(U_{(\mathbf {r},j)}(a)< b^{(\mathbf {r},j)}_{k_j}\) for all \(j\in \left\{ 1,\ldots ,n(\mathbf {r})\right\} {\setminus } \left\{ \overline{j}\right\} \). Analogously, \(a\xrightarrow [(\mathbf {r},\overline{j})]{P}C_{\le k_{\overline{j}}}\) implies that there exists at least one \((\overline{U},\overline{b})\) such that \(\overline{U}_{(\mathbf {r},\overline{j})}(a)< \overline{b}^{(\mathbf {r},\overline{j})}_{k_{\overline{j}}}\). Considering \(k=\max _{j=1,\ldots ,n(\mathbf {r})} k_j\), for \((\overline{U},\overline{b})\) and for the monotonicity of the thresholds we have that \(\overline{U}_{(\mathbf {r},j)}(a)< \overline{b}^{(\mathbf {r},j)}_{k}\) for all \(j=1,\ldots ,n(\mathbf {r})\). Adding up with respect to j we get \(\overline{U}_{\mathbf {r}}(a)=\sum _{j=1}^{n(\mathbf {r})}\overline{U}_{(\mathbf {r},j)}(a)< \sum _{j=1}^{n(\mathbf {r})}\overline{b}^{(\mathbf {r},j)}_{k}=\overline{b}^{\mathbf {r}}_{k}\), which proves point 5. \(\square \)

Proof of Proposition 4.2

  1. 1.

    Let \(L_{(\mathbf {r},j)}^{\mathcal{U}, P}(a)=h_j\) for all \(j=1,\ldots ,n(\mathbf {r})\). This means that \(a\xrightarrow [_{(\mathbf {r},j)}]{N} C_{\ge h_j}\) and not\(\left( a\xrightarrow [_{(\mathbf {r},j)}]{N} C_{\ge l}\right) \) with \(l>h_j\) for all \(j=1,\ldots ,n(\mathbf {r})\). By Proposition 4.1 we get \(a\xrightarrow [_{\mathbf {r}}]{N} C_{\ge h}\) with \(h=\min _{j=1,\ldots ,n(\mathbf {r})}h_j\). As a consequence we get the thesis.

  2. 2.

    Let \(R_{(\mathbf {r},j)}^{\mathcal{U}, P}(a)=k_j\) for all \(j=1,\ldots ,n(\mathbf {r})\). This means that \(a\xrightarrow [_{(\mathbf {r},j)}]{N} C_{\le k_j}\) and not\(\left( a\xrightarrow [_{(\mathbf {r},j)}]{N} C_{\ge l}\right) \) with \(l>k_j\) for all \(j=1,\ldots ,n(\mathbf {r})\). By Proposition 4.1 we get \(a\xrightarrow [_{\mathbf {r}}]{N} C_{\ge k}\) with \(k=\max _{j=1,\ldots ,n(\mathbf {r})}k_j\). As a consequence we get the thesis. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrente, S., Doumpos, M., Greco, S. et al. Multiple criteria hierarchy process for sorting problems based on ordinal regression with additive value functions. Ann Oper Res 251, 117–139 (2017). https://doi.org/10.1007/s10479-015-1898-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1898-1

Keywords

Navigation