Skip to main content

Advertisement

Log in

Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles

  • S.I.: Energy and Climate Policy Modeling
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The carbon emission of China’s industry accounts for more than 70 % of the total in the nation, thus the implementation of carbon emission quota trading in industry is of great importance to realize China’s national carbon emission reduction targets. Meanwhile, the allocation of carbon emission quota among sectors or enterprises proves the first and critical step. For this reason, this paper constructs a comprehensive index combined with the subjective, objective and linear combination weighting methods to allocate carbon emission quotas among the 39 sectors of China’s industry in 2020 based on the level of 2015, and employs the input-oriented ZSG-DEA model to examine the efficiency of allocation solutions in 2020. The results indicate that, first, when carbon emission reduction capacity, responsibility and potential are considered for the comprehensive index of carbon emission quota allocation, the mitigation responsibility plays a relatively higher role than other two indicators. Second, all of the subjective, objective and linear combination weighting methods can be used for effective allocation of carbon emission quotas, and the former two methods have less advantage in light of efficiency. Third, six key industrial sectors are respectively allocated over 500 million tonnes of carbon emission quotas in 2020, which together account for 91.77 % of the total in the industry. Finally, the final carbon emission quota allocation solution reflects both the equity and efficiency principles and achieve the Pareto optimal state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://www.eeo.com.cn/eobserve/Politics/beijing_news/2009/11/26/156666.shtml.

  2. http://finance.chinanews.com/ny/2012/01-13/3604393.shtml.

  3. http://xmecc.xmsme.gov.cn/2014-12/20141213214304.htm.

  4. http://www.h2o-china.com/news/239687.html.

  5. http://www.chinanews.com/gn/2013/08-13/5153788.shtml.

  6. http://www.nea.gov.cn/2011-09/08/c_131115016.htm.

  7. http://www.miit.gov.cn/n11293472/n11293832/n11293907/n11368223/14475991.html.

  8. http://politics.caijing.com.cn/20160305/4081073.shtml.

  9. http://www.chyxx.com/industry/201406/256175.html.

  10. http://www.ibaogao.com/free/102G0211R012.html.

  11. http://www.cnalu.cc/news/detail-20130801-13491.html.

  12. http://www.chyxx.com/industry/201406/256179.html.

References

  • Ahn, J. (2014). Assessment of initial emission quotas allocation methods in the Korean electricity market. Energy Policy, 43, 244–255.

    Google Scholar 

  • Arrow, K., Bolin, B., Costanza, R., Dasgupta, P., Folke, C., Holling, C. S., et al. (1995). Economic growth, carrying capacity, and the environment. Ecological Economics, 15, 91–95.

    Article  Google Scholar 

  • Baer, P., Athanasiou, T., Kartha, S., & Kemp-Benedict, E. (2008). The greenhouse development rights framework: The right to develop in a climate constrained world (2nd ed.). Berlin: Heinrich Böll Foundation, Christian Aid, EcoEquity and the Stockholm Environment Institute. http://www.ecoequity.org/docs/TheGDRsFramework.pdf.

  • Beckerman, W., & Pasek, J. (1995). The equitable international allocation of tradable carbon emission quotas. Global Environmental Change, 5(5), 405–413.

    Article  Google Scholar 

  • Chang, C. C., & Lai, C. T. (2013). Carbon quotas allocation in the transportation industry. Energy Policy, 63, 1091–1097.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making unites. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  • Cheng, B. B., Dai, H. C., Wang, P., Zhao, D. Q., & Masui, T. (2015). Impacts of carbon trading scheme on air pollutant emissions in Guangdong Province of China. Energy for Sustainable Development, 27, 174–185.

    Article  Google Scholar 

  • Dragulescu, A., & Yakovenko, V. M. (2000). Statistical mechanics of money. The European Physical Journal B-Condensed Matter and Complex Systems, 17(4), 723–729.

    Article  Google Scholar 

  • Gomes, E. G., & Lins, M. P. E. (2008). Modelling undesirable outputs with zero sum gains data envelopment analysis models. Journal of Operational Research Society, 59(5), 616–623.

    Article  Google Scholar 

  • Gupta, S. M., & Bhandari, P. (1999). An effective allocation criterion for CO\(_{2}\) emissions. Energy Policy, 27(12), 727–736.

    Article  Google Scholar 

  • IPCC. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. In: H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara & K. Tanabe (Eds.), National greenhouse gas inventories programme. IGES, Japan. https://www.ipcc.ch/pdf/activity/2006gls-brochure.pdf.

  • IPCC. (2013). Climate change 2013: The physical science basis. Geneva, Switzerland. https://www.ipcc.ch/report/ar5/wg1/.

  • Jiang, Y. X., Chi, G. T., & Yan, L. J. (2011). The linear combination weights method based on maximum entropy principle. Operations Research and Management Science, 20(1), 53–59 (in Chinese).

  • Jiang, J. J., Ye, B., & Ma, X. M. (2014). The construction of Shenzhen’s carbon emission trading scheme. Energy Policy, 75, 17–21.

    Article  Google Scholar 

  • Lee, C. F., Lin, S. J., & Lewis, C. (2008). Analysis of the impact of combing carbon taxation and emission trading on different industry sectors. Energy Policy, 36, 722–729.

    Article  Google Scholar 

  • Liao, Z. L., Zhu, X. L., & Shi, J. R. (2015). Case study on initial allocation of Shanghai carbon emission trading based on Shapley value. Journal of Cleaner Production, 103, 338–344.

    Article  Google Scholar 

  • Lin, T., & Ning, J. F. (2011). Study on allocation efficiency of carbon emission permit in EU ETS based on ZSG-DEA model. The Journal of Quantitative & Technical Economics, 3, 36–50.

    Google Scholar 

  • Lins, M. P. E., Gomes, E. G., de Mello, J. C. C. B. S., & de Mello, A. J. R. (2003). Olympic ranking based on a zero-sum gains DEA model. European Journal of Operational Research, 148, 312–322.

    Article  Google Scholar 

  • Lozano, S., & Gutierrez, E. (2008). Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO\(_{2}\) emissions. Ecological Economics, 66(4), 687–699.

    Article  Google Scholar 

  • Miao, Z., Geng, Y., & Sheng, J. (2016). Efficient allocation of CO\(_{2}\) emissions in China: A zero sum gains data envelopment model. Journal of Cleaner Production, 112(5), 4144–4150.

    Article  Google Scholar 

  • Pan, X. Z., Teng, F., & Wang, G. H. (2014). Sharing emission space at equitable basis: Allocation scheme based on the equal cumulative emission per capital principle. Applied Energy, 113, 1810–1818.

    Article  Google Scholar 

  • Park, J. W., Kim, C. U., & Iscard, W. (2012). Permit allocation in emission trading using the Boltzmann distribution. Physica A, 391(20), 4883–4890.

    Article  Google Scholar 

  • Ringius, L., Torvanger, A., & Holtsmark, B. (1998). Can multi-criteria rules fairly distribute climate burdens? OECD results from three burden sharing rules. Energy Policy, 26(10), 777–793.

    Article  Google Scholar 

  • Serrao, A. (2010). Reallocating agricultural greenhouse gas emission in EU 15 countries. In Poster prepared for presentation at the Agriculture & Applied Economics Association (AAEA), CASE, & WAEA joint annual meeting, Denver, Colorado, USA, July 25–27.

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.

    Article  Google Scholar 

  • Vadas, T. M., Fahey, T. J., Sherman, R. E., Demers, J. D., Grossman, Maul, Melvin, A. M., et al. (2007). Approaches for analyzing local carbon mitigation strategies: Tompkins County, New York, USA. International Journal of Greenhouse Gas Control, 1(3), 360–373.

    Article  Google Scholar 

  • Wang, Z. Y., Gu, H. F., Yi, X. X., & Zhang, S. R. (2003). A method of determining the linear combination weights based on entropy. Systems Engineering Theory and Practice, 3, 112–116 (in Chinese).

  • Wang, T. C., & Lee, H. D. (2009). Developing a fuzzy TOPSIS approsch base on subjective weights and objective weights. Expert Systems with Applications, 36, 8980–8985.

    Article  Google Scholar 

  • Wang, K., Wei, Y. M., & Zhang, X. (2012). A comparative analysis of China’s regional energy and emission performance: Which is a better way to deal with undesirable outputs? Energy Policy, 46, 574–584.

    Article  Google Scholar 

  • Wang, K., Wei, Y. M., & Zhang, X. (2013a). Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis. Applied Energy, 104, 105–116.

    Article  Google Scholar 

  • Wang, K., Zhang, X., Wei, Y. M., & Yu, S. W. (2013b). Regional allocation of CO\(_{2}\) emissions quotas over provinces in China by 2020. Energy Policy, 54, 214–229.

    Article  Google Scholar 

  • Winkler, H., Brouns, B., & Kartha, S. (2006). Future mitigation commitments: Differentiating among non-Annex I countries. Climate Policy, 5(5), 469–486.

    Article  Google Scholar 

  • Wu, F., Fan, L. W., Zhou, P., & Zhou, D. Q. (2012). Industrial energy efficiency with \(\text{ CO }_{2}\) emissions in China: A nonparametric analysis. Energy Policy, 49, 164–172.

    Article  Google Scholar 

  • Wu, L. B., Qian, H. Q., & Li, J. (2014). Advancing the experiment to reality: Perspectives on Shanghai pilot carbon emissions trading scheme. Energy Policy, 75, 22–30.

    Article  Google Scholar 

  • Xiong, L., Shen, B., Qi, S. Z., & Price, L. (2015). Assessment of allowance mechanism in China’s trading pilots. Energy Procedia, 75, 2510–2515.

    Article  Google Scholar 

  • Yu, S., Weikard, H. P., Zhu, X., & van Ierland, E. C. (2016). International carbon trade with constrained allowance choices: Results from the STACO model. Annals of Operations Research. doi:10.1007/s10479-016-2126-3.

  • Zhang, Y. J., & Hao, J. F. (2015). The allocation of carbon emission intensity reduction target by 2020 among provinces in China. Natural Hazards, 79(2), 921–937.

    Article  Google Scholar 

  • Zhang, Y. J., Wang, A. D., & Da, Y. B. (2014). Regional allocation of carbon quotas in China: Evidence from the Shapley value method. Energy Policy, 74, 454–464.

    Article  Google Scholar 

  • Zhang, Y. J., Wang, A. D., & Tan, W. P. (2015). The impact of China’s carbon allowance allocation rules on the products prices and emission reduction behaviors of ETS-covered enterprises. Energy Policy, 86, 176–185.

    Article  Google Scholar 

  • Zheng, L. Q. (2012). Sharing the carbon emission reduction responsibility across Chinese provinces: A zero sum gains DEA model. Recourse Science, 34, 2087–2096.

    Google Scholar 

  • Zhou, X., James, G., Liebman, A., Dong, Z. Y., & Ziser, C. (2010). Partial carbon quotas allocation of potential emission trading scheme in Australian electricity market. IEEE Transactions on Power Systems, 25, 543–553.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 71273028, 71322103) and the National Special Support Program for High-Level Personnel from the central government of China. We also would like to thank three responsible anonymous reviewers for their constructive comments and thank Dr. Ke Wang for his great help for the ZSG-DEA model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Jun Zhang.

Appendices

Appendix 1

See Table 4.

Table 4 The name of 39 industrial sectors in China

Appendix 2

See Tables 5, 6 and 7.

Table 5 Historical values and projection values of 39 industrial sectors
Table 6 The values of \(A_{i}\), \(B_{i}\) and \(C_{i}\) of 39 industrial sectors
Table 7 The reduction rates of carbon intensity and energy intensity of 39 industrial sectors (2015–2020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YJ., Hao, JF. Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles. Ann Oper Res 255, 117–140 (2017). https://doi.org/10.1007/s10479-016-2232-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2232-2

Keywords

Navigation