Skip to main content

Advertisement

Log in

Closed-loop supply chain coordination through incentives with asymmetric information

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A closed-loop supply chain seeks to enhance the consumers’ environmental consciousness to increase both the profits and the return of past-sold products. Even though, firms have misaligned interests for closing the loop: while all firms exploit consumers environmental consciousness to increase sales, only manufacturers use it for appropriating of returns’ residual value. Starting from a benchmark (no-incentive) scenario where a manufacturer (M) is the leader and a retailer (R) is the follower, we develop two incentive games through a profit-sharing contract to align firms’ motivations for closing the loop. In both incentive games, the incentive takes the form of a share of profits that M transfers to R. Our question is how the sharing fraction should be determined to make both players economically better-off. The first incentive game assumes that R has no-information on the sharing parameter, which is determined by M after R sets her strategies; thus the incentive has an endogenous nature. In the second incentive game the sharing parameter is common knowledge and both players know its values before the game starts, thus the incentive has an exogenous nature. We find that an endogenous incentive is never more economically and environmentally convenient than a no-incentive game. In contrast, an exogenous incentive can make both players economically better-off inside specific sharing parameter ranges. Nevertheless, when other forces (e.g., competition or legislation) impose the adoption of a profit-sharing contract, M should supply an endogenous incentive when the exogenous share is either too high or too low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Later, we will refer to Endogenous incentive with the superscript I and to Exogenous incentive with the superscript II.

References

  • Agrawal, V., & Tokay, L. B. (2010). Interdisciplinarity in closed-loop supply chain management research. In F. E. Ferguson & G. C. Souza (Eds.), Closed-loop supply chains: New developments to improve the sustainability of business practices. Boca Raton: CRC Press.

    Google Scholar 

  • Antonides, G., & van Raaij, F. (1998). Consumer behaviour: A European perspective. Chichester: Wiley.

    Google Scholar 

  • Aras, N., Boyaci, T., & Verter, V. (2004). The effect of categorizing returned products in remanufacturing. IIE Transactions, 36(4), 319–331.

    Article  Google Scholar 

  • Atasu, A., & Cetinkaya, S. (2006). Lot sizing for optimal collection and use of remanufacturable returns over a finite life-cycle. Production and Operations Management, 15(4), 473–487.

    Article  Google Scholar 

  • Bakal, I., & Akcali, E. (2006). Effects of random yield in reverse supply chains with price sensitive supply and demand. Production and Operations Management, 15(3), 407–420.

    Article  Google Scholar 

  • Bellantuono, N., Giannoccaro, I., Pontrandolfo, P., & Tang, C. S. (2009). The implications of joint adoption of revenue sharing and advance booking discount programs. International Journal of Production Economics, 121(2), 383–394.

    Article  Google Scholar 

  • Cachon, G. P. (2003). Supply chain coordination with contracts. In S. Graves & T. de Kok (Eds.), Handbooks in operations research and management science: Supply chain management. Amsterdam: North-Holland.

    Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (2005). Supply chain coordination with revenues sharing contracts: Strength and limitations. Management Science, 51(1), 30–44.

    Article  Google Scholar 

  • Corbett, C., & DeCroix, G. (2001). Shared-savings contracts for indirect materials in supply chains: Channel profits and environmental impacts. Management Science, 47(7), 881–893.

    Article  Google Scholar 

  • Corbett, C. J., & Savaskan, R. C. (2003). Contracting and coordination in closed-loop supply chains. In V. Daniel, R. Guide Jr., & L. N. Van Wassenhove (Eds.), Business aspects of closed-loop supply chains: Exploring the issues. Pittsburgh: Carnegie Mellon University Press.

    Google Scholar 

  • De Giovanni, P. (2014a). Should a retailer contribute to a quality improvements strategy? In T. Basar (Ed.), Annals of the international society of dynamic games (Vol. 14, pp. 365–378). Boston: Birkhäuser.

  • De Giovanni, P. (2014b). Environmental collaboration through a profit sharing contract. Annals of Operations Research, 6, 1–23.

  • De Giovanni, P. (2015). State-and control-dependent incentives in a closed-loop supply chain with dynamic returns. Dynamic Games and Applications, 1(4), 1–35.

    Google Scholar 

  • De Giovanni, P. (2016). Coordination in a distribution channel with decisions on the nature of incentives and share-dependency on pricing. Journal of the Operational Research Society. doi:10.1057/jors.2015.118.

  • De Giovanni, P., & Roselli, M. (2012). Overcoming the drawbacks of a revenue-sharing contract through a support program. Annals of Operations Research, 196(1), 201–222.

    Article  Google Scholar 

  • De Giovanni, P., & Zaccour, G. (2013). Cost-sharing contract in a closed-loop supply chain. Annals of the International Society of Dynamic Games, 160, 395–421.

    Article  Google Scholar 

  • De Giovanni, P., & Zaccour, G. (2014). A two-period game of closed loop supply chain. European Journal of Operational Research, 232(1), 22–40.

    Article  Google Scholar 

  • El Ouardighi, F., Jørgensen, S., & Pasin, F. (2008). A dynamic game of operations and marketing management in a supply chain. International Game Theory Review, 10(4), 373–397.

    Article  Google Scholar 

  • El Ouardighi, F., & Kogan, K. (2013). Dynamic conformance and design quality in a supply chain: An assessment of contracts’ coordinating power. Annals of Operations Research, 211(1), 137–166.

    Article  Google Scholar 

  • Ferguson, M. E., & Tokay, L. B. (2006). The effect of competition on recovery strategies. Production and Operations Management, 15(3), 351–368.

    Article  Google Scholar 

  • Ferrer, G., & Swaminathan, J. (2006). Managing newand remanufactured products. Management Science, 52(1), 15–26.

    Article  Google Scholar 

  • Fleischmann, M., Beullens, P., Bloemhof-Ruwaard, J. M., & Van Wassenhove, L. N. (2001). The impact of product recovery on logistic network design. Production and Operations Management, 10(2), 156–173.

    Article  Google Scholar 

  • Fleischmann, M., van Nunen, J., & Grave, B. (2002). Integrating closed-loop supply chains and spare parts in IBM. ERIM Report Series Research in Management ERS-2002-107-LIS.

  • Gangshu, G. C. (2010). Channel selection and coordination in dual-channel supply chains. Journal of Retailing, 6(1), 22–36.

    Google Scholar 

  • Gerchak, Y., & Wang, Y. (2004). Revenue-sharing vs. wholesale-price contracts in assembly systems with random demand. Production and Operations Management, 13(1), 23–33.

    Article  Google Scholar 

  • Giannoccaro, I., & Pontrandolfo, P. (2009). Negotiation of the revenue sharing contract: An agent-based systems approach. International Journal of Production Economics, 122(2), 558–566.

    Article  Google Scholar 

  • Guide Jr, V. D. R. (2000). Production planning and control for remanufacturing: Industry practice and research needs. Journal of Operations Management, 18(4), 467–483.

    Article  Google Scholar 

  • Guide, V. D. R., Jayaraman, V., & Linton, V. D. (2003). Building contingency planning for closed-loop supply chains with product recovery. Journal of Operations Management, 21(3), 259–279.

    Article  Google Scholar 

  • Guide, V. D. R., & Van Wassenhove, L. N. (2001). Managing product returns for remanufacturing. Production and Operations Management, 10(2), 55–142.

    Google Scholar 

  • Guide Jr, V. D. R., & Van Wassenhove, L. N. (2002). The reverse supply chain. Havard Business Review, 80(2), 25–26.

  • Guide, V. D. R., & van Wassenhove, L. N. (2009). The evolution of closed-loop supply chain research. Operations Research, 57(1), 10–18.

    Article  Google Scholar 

  • Jørgensen, S. (2012). Intertemporal contracting in a supply chain. Dynamic Games and Applications, 1(2), 280–300.

    Article  Google Scholar 

  • Laroche, M., Bergeron, J., & Barbaro-Forleo, G. (2001). Targeting consumers who are willing to pay more for environmentally friendly products. Journal of Consumer Marketing, 18(6), 503–20.

    Article  Google Scholar 

  • Li, S., Zhu, Z., & Huang, L. (2009). Supply chain coordination and decision making under consignment contract with revenue sharing. International Journal of Production Economics, 120(1), 88–99.

    Article  Google Scholar 

  • Linh, C. T., & Hong, Y. (2009). Channel coordination through a revenue sharing contract in a two-period newsboy problem. European Journal of Operational Research, 198(3), 822–829.

    Article  Google Scholar 

  • Lund, R. T. (1996). The remanufacturing industry: Hidden Giant. Boston, MA: Boston University.

    Google Scholar 

  • Majumder, P., & Groenevelt, H. (2001). Competition in remanufacturing. Production and Operations Management, 10(2), 125–141.

    Article  Google Scholar 

  • Nerlove, M. K., & Arrow, J. (1962). Optimal advertising policy under dynamic conditions. Economica, 29, 129–142.

    Article  Google Scholar 

  • Parker, D., & Butler, P. (2007). An introduction to remanufacturing. Aylesbury: Centre for Remanufacturing and Reuse.

    Google Scholar 

  • Pasternack, B. A. (2002). Using revenue sharing to achieve channel coordination for a newsboy type inventory model. In Supply chain management: Models, applications, and research directions (pp. 117–136). US: Springer.

  • Qin, A., & Yang, J. (2008). Analysis of a revenue-sharing contract in supply chain management. International Journal of Logistics Research and Applications, 11(1), 17–29.

    Article  Google Scholar 

  • Ray, S., Boyaci, T., & Aras, N. (2005). Optimal prices and trade-in rebates for durable, remanufacturable products. Manufacturing and Service Operations Management, 7(3), 208–288.

    Article  Google Scholar 

  • Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed loop supply chain models with product remanufacturing. Management Science, 50(2), 239–252.

    Article  Google Scholar 

  • Savaskan, R. C., & Van Wassenhove, L. N. (2006). Reverse channel design: The case of competing retailers. Management Science, 52(1), 1–14.

    Article  Google Scholar 

  • Schlegelmilch, B. B., Bohlen, G. M., & Diamantopoulos, A. (1996). The link between green purchasing decisions and measures of environmental consciousness. European Journal of Marketing, 30(5), 35–55.

    Article  Google Scholar 

  • Schultmann, F., Engels, B., & Rentz, O. (2003). Closed-loop supply chains for spent batteries. Interfaces, 33(6), 57–71.

    Article  Google Scholar 

  • Seitz, M. A., & Peattie, K. (2004). Meeting the closed-loop challenge: The case of remanufacturing. California Management Review, 46, 74–89.

    Article  Google Scholar 

  • Sluis, S., & De Giovanni, P. (2016). The selection of contracts in supply chains: An empirical analysis. Journal of Operations Management, 41(1), 1–11.

    Article  Google Scholar 

  • Souza, G. C. (2013). Closed-loop supply chains: A critical review, and future research. Decision Sciences, 44(1), 7–38.

    Article  Google Scholar 

  • Srinivasan, A. K., & Blomquist, G. C. (2009). Ecolabeled paper towels: Consumer valuation and expenditure analysis. Journal of Environmental Management, 90(1), 314–320.

    Article  Google Scholar 

  • Straughan, R., & Roberts, J. (1999). Environmental segmentation alternatives: A look at green consumer behaviour in the new millennium. Journal of Consumer Marketing, 16(6), 558–575.

    Article  Google Scholar 

  • Sheu, J. B. (2011). Marketing-driven channel coordination with revenue-sharing contracts under price promotion to end-customers. European Journal of Operational Research, 214(2), 246–255.

    Article  Google Scholar 

  • Taboubi, S., & Zaccour, G. (2002). Impact of R’s myopia on channel’s strategies. In Optimal control and differential games. Essays in honour of Steffen Jørgensen. Dordrecht: Kluwer Academic.

  • Toptal, A., & Çetinkaya, B. (2015). How supply chain coordination affects the environment: A carbon footprint perspective. Annals of Operations Research. doi:10.1007/s10479-015-1858-9.

  • Wang, Y., Jiang, L., & Shen, Z. J. (2004). Channel performance under consignment contract with revenue sharing. Management Science, 50(1), 34–47.

    Article  Google Scholar 

  • Yao, Z., Leung, C. H. S., & Lai, K. K. (2008). Manufacturer’s revenue-sharing contract and retail competition. European Journal of Operational Research, 186(2), 637–651.

    Article  Google Scholar 

  • Zhou, S., Tao, Z., & Chao, X. (2011). Optimal control of inventory systems with multiple types of remanufacturable products. Manufacturing & Service Operations Management, 13(1), 20–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro De Giovanni.

Appendix

Appendix

Proof of Proposition 1

We need to establish the existence of bounded and continuously differentiable value functions \(V_M \left( G \right) ,V_R \left( G \right) \) such that there exists a unique solution G(t) to Eq. (1) and the HJB equations. The players’ HJBs in the benchmark scenario are:

$$\begin{aligned} \rho V_M= & {} \left( {\theta \sqrt{G}-\beta p} \right) \left( {\omega +K\sqrt{G}} \right) -\frac{\mu _M A_M^2}{2}+V_M^{\prime } \left[ {aA_M +bA_R -\delta G} \right] \end{aligned}$$
(25)
$$\begin{aligned} \rho V_R= & {} \left( {\theta \sqrt{G}-\beta p} \right) \left( {p-\omega } \right) -\frac{\mu _R A_R^2}{2}+V_R^{\prime } \left[ {aA_M +bA_R -\delta G} \right] \end{aligned}$$
(26)

Since the game is played à la Stackelberg and M is the leader, we first determine the necessary conditions of R as:

$$\begin{aligned} p=\frac{\theta \sqrt{G}+\beta \omega }{2\beta }\quad \hbox {and}\quad A_R =\frac{bV_R^{\prime }}{\mu _R} \end{aligned}$$
(27)

Substituting (27) into M’s HBJ equation, Eq. (25) becomes:

$$\begin{aligned} \rho V_M =\left( {\frac{\theta \sqrt{G}-\beta \omega }{2}} \right) \left( {\omega +K\sqrt{G}} \right) -\frac{\mu _M A_M^2 }{2}+V_M^{\prime } \left[ {aA_M +\frac{b^{2}V_R^{\prime }}{\mu _R }-\delta G} \right] \end{aligned}$$
(28)

and therefore M’s necessary conditions are:

$$\begin{aligned} \omega =\frac{\left( {\theta -\beta K} \right) \sqrt{G}}{2\beta }\quad \hbox {and}\quad A_M =\frac{aV_M^{\prime }}{\mu _M} \end{aligned}$$
(29)

Using Eqs. (29), the pricing strategy is given by:

$$\begin{aligned} p=\frac{\left( {3\theta -\beta K} \right) \sqrt{G}}{4\beta } \end{aligned}$$
(30)

Replacing the players’ strategies inside Eqs. (26) and (28), we obtain:

$$\begin{aligned} 8\beta \mu _M \mu _R V_M= & {} \mu _M \mu _R \left( {\theta +\beta K} \right) ^{2}G+4\beta V_M^{\prime } \left[ \left( \mu _R a^{2}V_M^{\prime } \right. \right. \nonumber \\&\left. \left. +\,2\mu _M b^{2}V_R^{\prime } \right) -2\mu _M \mu _R \delta G \right] \end{aligned}$$
(31)
$$\begin{aligned} 16\beta \mu _M \mu _R V_R= & {} \mu _M \mu _R \left( {\theta +\beta K} \right) ^{2}G+8V_R^{\prime } \left[ \left( 2\mu _R a^{2}V_M^{\prime }\right. \right. \nonumber \\&\left. \left. +\,\mu _M b^{2}V_R^{\prime } \right) -2\mu _M \mu _R \delta G \right] \end{aligned}$$
(32)

We conjecture linear value functions, \(V_M =l_1 G+l_2 \) and \(V_R =l_3 G+l_4\) where \(l_1, l_2, l_3 \), and \(l_4 \) are the constant parameters to be identified. Substituting \(V_M \) and \(V_R \) and their derivatives inside Eqs. (31) and (32) it gives:

$$\begin{aligned} 8\beta \mu _M \mu _R \left( {l_1 G+l_2} \right)= & {} \mu _M \mu _R \left( {\theta +\beta K} \right) ^{2}G+4\beta l_1 \left[ \left( {\mu _R a^{2}l_1 +2\mu _M b^{2}l_3} \right) \right. \nonumber \\&\left. -\,2\mu _M \mu _R \delta G \right] \end{aligned}$$
(33)
$$\begin{aligned} 16\beta \mu _M \mu _R \left( {l_3 G+l_4} \right)= & {} \mu _M \mu _R \left( {\theta +\beta K} \right) ^{2}G+8\beta l_3 \left[ \left( {2\mu _R a^{2}l_1 +\mu _M b^{2}l_3} \right) \right. \nonumber \\&\left. -\,2\mu _M \mu _R \delta G \right] \end{aligned}$$
(34)

while we can identify the parameter values such as:

$$\begin{aligned} l_1= & {} \frac{\left( {\theta +\beta K} \right) ^{2}}{8\beta \left( {\rho +\delta } \right) }, \quad l_2 =\frac{l_1 \left( {\mu _R a^{2}l_1 +2\mu _M b^{2}l_3} \right) }{2\rho \mu _M \mu _R}, \nonumber \\ l_3= & {} \frac{\left( {\theta +\beta K} \right) ^{2}}{16\beta \left( {\rho +\delta } \right) },\quad \hbox { and}\quad l_4 =\frac{l_3 \left( {2\mu _R a^{2}l_1 +\mu _M b^{2}l_3} \right) }{2\rho \mu _M \mu _R} \end{aligned}$$
(35)

which are all strictly positive; thus, the result shows concave profit functions with respect to the decision variables and an unique equilibrium that maximizes players’ objective functions. \(\square \)

Proof of Proposition 2

We need to establish the existence of bounded and continuously differentiable value functions \(V_M^I \left( {G^{I}} \right) ,V_R^I \left( {G^{I}} \right) \) such that there exists a unique solution \(G^{I}(t)\) to Eq. (1) and the HJB equations. The players’ HJBs in Scenario I are:

$$\begin{aligned} \rho V_M^I= & {} \left( {\theta \sqrt{G^{I}}-\beta p^{I}} \right) \left( {\omega +K^{I}\sqrt{G^{I}}} \right) \left( {1-\phi } \right) -\frac{\mu _M A_M^{I^{2}}}{2}+V_M^{{\prime }} \left[ {aA_M^I +bA_R^I -\delta G^{I}} \right] \nonumber \\ \end{aligned}$$
(36)
$$\begin{aligned} \rho V_R^I= & {} \left( {\theta \sqrt{G^{I}}-\beta p^{I}} \right) \left( p^{I}-\omega +\phi \left( {\omega +K\sqrt{G^{I}}} \right) \right. \nonumber \\&\left. -\,sc_L \sqrt{G^{I}} \right) -\frac{\mu _R A_R^{I^{2}} }{2}+V_R^{{\prime }} \left[ {aA_M^I +bA_R^I -\delta G^{I}} \right] \end{aligned}$$
(37)

As in the benchmark scenario, the game is played à la Stackelberg and M is the leader. First we substitute the wholesale price strategy of the benchmark scenario inside Eqs. (36) and (37), thus we determine the necessary conditions of R as:

$$\begin{aligned} p^{I}=\frac{\left[ {\left( {3-\phi } \right) \theta -\beta K\left( {1+\phi } \right) +2\beta sc_L} \right] \sqrt{G^{I}}}{4\beta }\quad \hbox { and}\quad A_R^I =\frac{bV_R^{{\prime }}}{\mu _R} \end{aligned}$$
(38)

Substituting (38) into M’s HBJ equation, Eq. (36) becomes:

$$\begin{aligned} V_M^I= & {} \left( {\frac{\left[ {\left( {\theta +\beta K} \right) \left( {1+\phi } \right) -2\beta sc_L} \right] }{4}} \right) \left( {\frac{\left( {\theta +\beta K} \right) }{2\beta }} \right) \left( {1-\phi } \right) G^{I}\nonumber \\&-\,\frac{\mu _M A_M^{I^{2}} }{2}+V_M^{{\prime }} \left[ {aA_M^I +\frac{b^{2}V_R^{{\prime }I} }{\mu _R}-\delta G^{I}} \right] \end{aligned}$$
(39)

and therefore M’s necessary conditions are:

$$\begin{aligned} \phi =\frac{\beta sc_L}{\theta +\beta K}\quad \hbox { and}\quad A_M^I =\frac{aV_M^{{\prime }}}{\mu _M} \end{aligned}$$
(40)

Then, the pricing strategy becomes:

$$\begin{aligned} p^{I}=\frac{3\theta -\beta K+\beta sc_L}{4\beta }\sqrt{G^{I}} \end{aligned}$$
(41)

Replacing Eqs. (40) and (41) inside Eq. (37) and Eq. (39), we obtain:

$$\begin{aligned} 8\beta \rho \mu _M \mu _R V_M^I= & {} \mu _M \mu _R \left[ {\theta +\beta \left( {K-sc_L} \right) } \right] ^{2}G^{I}\nonumber \\&+\,4V_M^{{\prime }} \left[ {\mu _R a^{2}V_M^{{\prime }} +2\mu _M b^{2}V_R^{{\prime }} -2\mu _M \mu _R \delta G^{I}} \right] \end{aligned}$$
(42)
$$\begin{aligned} 16\beta \rho \mu _M \mu _R V_R^I= & {} \mu _M \mu _R \left[ {\theta +\beta \left( {K-sc_L} \right) } \right] ^{2}G^{I}\nonumber \\&+\,8\beta V_R^{{\prime }} \left[ {2\mu _R a^{2}V_M^{{\prime }} +\mu _M b^{2}V_R^{{\prime }} -2\mu _M \mu _R \delta G^{I}} \right] \end{aligned}$$
(43)

We conjecture linear value functions, \(V_M^I =n_1 G^{I}+n_2 \) and \(V_R^I =n_3 G^{I}+n_4 \) where \(n_1, n_2, n_3 \), and \(n_4 \) are the constant parameters to be identified. Substituting \(V_M^I \) and \(V_R^I \) and their derivatives inside Eq. (42) and Eq. (43) it gives:

$$\begin{aligned} 8\beta \rho \mu _M \mu _R \left( {n_1 G^{I}+n_2} \right)= & {} \mu _M \mu _R \left[ {\theta +\beta \left( {K-sc_L} \right) } \right] ^{2}G^{I}\nonumber \\&+\,4n_1 \left[ {\mu _R a^{2}n_1 +2\mu _M b^{2}n_3 -2\mu _M \mu _R \delta G^{I}} \right] \end{aligned}$$
(44)
$$\begin{aligned} 16\beta \rho \mu _M \mu _R \left( {n_3 G^{I}+n_4} \right)= & {} \mu _M \mu _R \left[ {\theta +\beta \left( {K-sc_L} \right) } \right] ^{2}G^{I}\nonumber \\&+\,8\beta n_3 \left[ {2\mu _R a^{2}n_1 +\mu _M b^{2}n_3 -2\mu _M \mu _R \delta G^{I}} \right] \end{aligned}$$
(45)

while we can identify the parameter values such as:

$$\begin{aligned} n_1= & {} \frac{\left[ {\theta +\beta \left( {K-sc_L} \right) } \right] ^{2}}{8\beta \left( {\rho +\delta } \right) }, \quad n_2 =\frac{n_1 \left[ {\mu _R a^{2}n_1 +2\mu _M b^{2}n_3} \right] }{2\rho \mu _M \mu _R}, \nonumber \\ n_3= & {} \frac{\left[ {\theta +\beta \left( {K-sc_L} \right) } \right] ^{2}}{16\beta \left( {\rho +\delta } \right) },\quad \hbox { and}\quad n_4 =\frac{n_3 \left[ {2\mu _R a^{2}n_1 +\mu _M b^{2}n_3} \right] }{2\rho \mu _M \mu _R}. \end{aligned}$$
(46)

which are all strictly positive; thus, the result shows concave profit functions with respect to the decision variables and an unique equilibrium that maximizes players’ objective functions. \(\square \)

Proof of Proposition 3

Hereby we follow the same procedure of the previous proof with the difference that the sharing parameter is exogenous. We need to establish the existence of bounded and continuously differentiable value functions \(V_M^{II} \left( {G^{II}} \right) ,V_R^{II} \left( {G^{II}} \right) \) such that there exists a unique solution \(G^{II}(t)\) to Eq. (1) and the HJB equations. The players’ HJBs in Scenario II are:

$$\begin{aligned} \rho V_M^{II}= & {} \left( {\theta \sqrt{G^{II}}-\beta p^{II}} \right) \left( {\omega +K\sqrt{G^{II}}} \right) \left( {1-\phi ^{II}} \right) \nonumber \\&-\,\frac{\mu _M A_M^{II^{2}}}{2}+V_M^{II{\prime }} \left[ {aA_M^{II} +bA_R^{II} -\delta G^{II}} \right] \end{aligned}$$
(47)
$$\begin{aligned} \rho V_R^{II}= & {} \left( {\theta \sqrt{G^{II}}-\beta p^{II}} \right) \left( {p^{II}-\omega +\phi ^{II}\left( {\omega +K\sqrt{G^{II}}} \right) -sc_L \sqrt{G^{II}}} \right) \nonumber \\&-\,\frac{\mu _R A_R^{II^{2}}}{2}+V_R^{II{\prime }} \left[ {aA_M^{II} +bA_R^{II} -\delta G^{II}} \right] \end{aligned}$$
(48)

As in the benchmark scenario, the game is played à la Stackelberg and M is the leader. First the wholesale price in the benchmark scenario inside Eqs. (47) and (48), thus we determine the necessary conditions of R as:

$$\begin{aligned} p^{II}=\frac{\left[ {\left( {3-\phi ^{II}} \right) \theta -\beta K\left( {1+\phi ^{II}} \right) +2\beta sc_L} \right] \sqrt{G^{II}}}{4\beta }\quad \hbox { and}\quad A_R^{II} =\frac{bV_R^{II{\prime }}}{\mu _R} \end{aligned}$$
(49)

Substituting (49) into M’s HBJ equations Eq. (48) becomes:

$$\begin{aligned} V_M^{II}= & {} \left( {\frac{\left[ {\left( {\theta +\beta K} \right) \left( {1+\phi } \right) -2\beta sc_L} \right] }{4}} \right) \left( {\frac{\left( {\theta +\beta K} \right) }{2\beta }} \right) \left( {1-\phi } \right) G^{II}\nonumber \\&-\,\frac{\mu _M A_M^{II^{2}} }{2}+V_M^{II{\prime }} \left[ {aA_M^{II} +\frac{b^{2}V_R^{{\prime }II} }{\mu _R}-\delta G^{II}} \right] \end{aligned}$$
(50)

and therefore M’s necessary condition is:

$$\begin{aligned} A_M^{II} =\frac{aV_M^{II{\prime }}}{\mu _M} \end{aligned}$$
(51)

Replacing the players’ strategies inside Eqs. (48) and (50), we obtain:

$$\begin{aligned} 8\beta \mu _M \mu _R \rho V_M^{II}= & {} \mu _M \mu _R \left[ {\left( {\theta +\beta K} \right) \left( {1+\phi ^{II}} \right) -2\beta sc_L} \right] \left( {\theta +\beta K} \right) \left( {1-\phi ^{II}} \right) G^{II} \nonumber \\&+\,4\beta V_M^{II{\prime }} \left[ {\mu _R a^{2}V_M^{II{\prime }} +2\mu _M b^{2}V_R^{II{\prime }} -2\delta \mu _M \mu _R G^{II}} \right] \end{aligned}$$
(52)
$$\begin{aligned} 16\beta \mu _M \mu _R \rho V_R^{II}= & {} \left[ {\left( {\theta +\beta K} \right) \left( {1+\phi ^{II}} \right) -2\beta sc_L} \right] ^{2}G^{II}\nonumber \\&+\,8\beta V_R^{II{\prime }} \left[ {2\mu _R a^{2}V_M^{II{\prime }} +\mu _M b^{2}V_R^{II{\prime }} -2\mu _M \mu _R \delta G^{II}} \right] \end{aligned}$$
(53)

We conjecture linear value functions, \(V_M^{II} =m_1 G^{II}+m_2 \) and \(V_R^{II} =m_3 G^{II}+m_4 \)where \(m_1, m_2, m_3 \), and \(m_4 \) are the constant parameters to be identified. Substituting \(V_M^{II} \) and \(V_R^{II} \) and their derivatives inside Eqs. (52) and (53), it gives:

$$\begin{aligned} 8\beta \mu _M \mu _R \rho \left( {m_1 G^{II}+m_2} \right)= & {} \mu _M \mu _R \left[ {\left( {\theta +\beta K} \right) \left( {1+\phi ^{II}} \right) -2\beta sc_L} \right] \left( {\theta +\beta K} \right) \left( {1-\phi ^{II}} \right) G^{II} \nonumber \\&+\,4\beta m_1 \left[ {\mu _R a^{2}m_1 +2\mu _M b^{2}m_3 -2\delta \mu _M \mu _R G^{II}} \right] \end{aligned}$$
(54)
$$\begin{aligned} 16\beta \mu _M \mu _R \rho \left( {m_3 G^{II}+m_4} \right)= & {} \left[ {\left( {\theta +\beta K} \right) \left( {1+\phi ^{II}} \right) -2\beta sc_L} \right] ^{2}G^{II}\nonumber \\&+\,8\beta m_3 \left[ {2\mu _R a^{2}m_1 +\mu _M b^{2}m_3 -2\mu _M \mu _R \delta G^{II}} \right] \end{aligned}$$
(55)

while we can identify the parameter values such as:

$$\begin{aligned}&\displaystyle m_1 =\frac{\left[ {\left( {\theta +\beta K^{C}} \right) \left( {1+\phi ^{II}} \right) -2\beta sc_L} \right] \left( {\theta +\beta K^{C}} \right) \left( {1-\phi ^{II}} \right) }{8\beta \left( {\rho +\delta } \right) }, \nonumber \\&\displaystyle m_2 =\frac{m_1 \left[ {\mu _R a^{2}m_1 +2\mu _M b^{2}m_3} \right] }{2\mu _M \mu _R \rho }, \nonumber \\&\displaystyle m_3 =\frac{\left[ {\left( {\theta +\beta K^{C}} \right) \left( {1+\phi ^{II}} \right) -2\beta sc_L} \right] ^{2}}{16\beta \left( {\rho +\delta } \right) },\quad \hbox { and}\quad m_4 =\frac{m_3 \left[ {2\mu _R a^{2}m_1 +\mu _M b^{2}m_3} \right] }{2\mu _M \mu _R \rho }.\nonumber \\ \end{aligned}$$
(56)

which are all strictly positive; thus, the result shows concave profit functions with respect to the decision variables and an unique equilibrium that maximizes players’ objective functions. \(\square \)

Proof of Proposition 9

Compute the difference \(V_M -V_M^I \) to show that \(V_M -V_M^I =\frac{c_L s\left[ {\left( {b^{2}\mu _M +a^{2}\mu _R} \right) \left( {\delta +\rho } \right) +a^{2}\mu _R \rho } \right] \Omega }{128\beta \delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}\) with

$$\begin{aligned} \Omega= & {} \left\{ \begin{array}{l} 4\left( {s\beta \Delta +\theta } \right) ^{3}+6c_R^2 h^{2}\beta ^{2}\left( {2\left( {s\beta \Delta +\theta } \right) -3c_L s\beta } \right) +c_L^2 s^{2}\beta ^{2}\left( {s\beta \Delta +\theta } \right) \left[ {28c_L s\beta -18\left( {s\beta \Delta +\theta } \right) } \right] \\ -\beta ^{3}\left( {4c_R^3 h^{3}+15c_L ^{3}s^{3}} \right) +4c_L h\beta \left( {9c_L s\beta \left( {s\beta \Delta +\theta } \right) -3\left( {s\beta \Delta +\theta } \right) ^{2}-7c_L^2 s^{2}\beta ^{2}} \right) \\ \end{array} \right\} >0. \end{aligned}$$

To proof that \(V_M -V_M^I >0\), we solve the third degree polynomial \(\Omega \) with respect to \(\theta +\beta s\Delta \). Among the three solutions, only one is feasible, that is \(\theta +\beta s\Delta =\frac{\beta \left( {3c_L s+2c_R h} \right) }{2}\). Therefore, the result \(V_M -V_M^I >0\) always holds because it meets the assumption \(\psi _1 \ge \beta c_L s\); further, computing the difference \(V_M -V_M^{II} \), we can demonstrate that:

  1. (a)

    when \(\phi ^{II}=0,\quad V_M -V_M^{II} =\frac{\psi _1 \left[ {\mu _M b^{2}\left( {\rho +\delta } \right) \left( {\psi _1^3 -\psi _2^3} \right) +\mu _R a^{2}\left( {2\rho +\delta } \right) \psi _1 \left( {\psi _1^2 +\psi _2^2} \right) } \right] }{128\beta ^{2}\delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}>0\);

  2. (b)

    when \(\phi ^{II}=1,\quad V_M -V_M^{II} =\frac{\psi _1^4 \left[ {\left( {\rho +\delta } \right) \left( {\mu _M b^{2}+\mu _R a^{2}} \right) +\rho \mu _R a^{2}} \right] }{128\beta ^{2}\delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}>0\);

  3. (c)

    when

$$\begin{aligned}&V_M -V_M^{II} =\\&\frac{\psi _1 \left\{ {\left( {V_M -V_M^{II}} \right) _{\left| {\phi ^{II}=1} \right. } -\left( {1-\phi ^{II}} \right) \left( {\psi _2 +\phi ^{II}\psi _1} \right) ^{2}\left[ {\left( {2\rho +\delta } \right) a^{2}\mu _R \psi _1 \left( {1-\phi ^{II}} \right) +\left( {\delta +\rho } \right) b^{2}\mu _M \left( {\psi _2 +\psi _1 \phi ^{II}} \right) } \right] } \right\} }{128\beta ^{2}\delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}\le 0 \end{aligned}$$

with \(\psi _2 =\psi _1 -2c_L s\beta \ge 0\), where define the interval inside which \(V_M -V_M^{II} \le 0\) holds.

Finally, compute the difference \(V_M^I -V_M^{II} \), we demonstrate that:

  1. (a)

    when \(\phi ^{II}=0,V_M^I -V_M^{II} =\frac{\left( {V_M^I -V_M^{II}} \right) _{\left| {\phi ^{II}=1} \right. } -\psi _1 \psi _2^2 \left[ {a^{2}\rho \mu _R \psi _1 +\left( {\rho +\delta } \right) \left( {a^{2}\mu _R \psi _1 +b^{2}\mu _M \psi _2} \right) } \right] }{128\beta ^{2}\delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}>0\);

  2. (b)

    when \(\phi ^{II}=1,V_M^I -V_M^{II} =\frac{\left( {\psi _1 -c_L s\beta } \right) ^{4}\left[ {\left( {\rho +\delta } \right) \left( {\mu _M b^{2}+\mu _R a^{2}} \right) +\rho \mu _R a^{2}} \right] }{128\beta ^{2}\delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}>0\);

  3. (c)

    when ,

    $$\begin{aligned}&V_M^I -V_M^{II} \\&=\frac{\left( {V_M^I -V_M^{II}} \right) _{\left| {\phi ^{II}=1} \right. } -\psi _1 \left( {1-\phi ^{II}} \right) \left( {\psi _2 +\phi ^{II}\psi _1} \right) ^{2}\left[ {\left( {2\rho +\delta } \right) a^{2}\mu _R \psi _1 \left( {1-\phi ^{II}} \right) +\left( {\delta +\rho } \right) b^{2}\mu _M \left( {\psi _2 +\psi _1 \phi ^{II}} \right) } \right] }{128\beta ^{2}\delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}\le 0, \end{aligned}$$

    where define the interval inside which \(V_M^I -V_M^{II} \le 0\) holds. \(\square \)

Proof of Proposition 10

Compute the difference \(V_R -V_R^I \) to show that \(V_R -V_R^I =\frac{c_L s\left[ {\left( {b^{2}\mu _M +4a^{2}\mu _R} \right) \left( {\delta +\rho } \right) +b^{2}\mu _M \rho } \right] \Omega }{512\beta \delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}>0\) because \(\Omega >0\). The sign of the difference \(V_R -V_R^{II} \) depends on \(\phi ^{II}\). Fixing \(\psi _3 =4a^{2}\mu _R \left( {\delta +\rho } \right) +b^{2}\mu _M \left( {\delta +2\rho } \right) >0\), the following cases can be displayed:

  1. (1)

    when \(\phi ^{II}=0, \quad V_R -V_R^{II} =\frac{\psi _3 \psi _1^4 -\psi _2^3 \left[ {4a^{2}\mu _R \psi _1 \left( {\rho +\delta } \right) +b^{2}\mu _M \psi _2 \left( {\delta +2\rho } \right) } \right] }{512\beta ^{2}\delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}>0\), as \(\psi _1 >\psi _2 \);

  2. (2)

    when \(\phi ^{II}=1, V_R -V_R^{II} =\frac{\psi _3 \psi _1^4 -\left( {\psi _2 +\psi _1} \right) ^{4}b^{2}\mu _M \left( {\delta +2\rho } \right) }{512\beta \delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}<0\). Assume that \(\delta =\rho =\mu _M =\mu _R =a=b=1\); substituting for \(\psi _2 =\psi _1 -2c_L s\beta \), the numerator becomes \(11\psi _1^4 -48\left( {\psi _1 -c_L s\beta } \right) ^{4}\le 0\). Solving this polynomial with respect to \(\psi _1\) gives four solutions: the first two are not feasible, while the second two are feasible and negative. Therefore, \(V_R -V_R^{II} <0\) always holds.

Finally, cases (1) and (2) allow one to verify that \(V_R -V_R^{II} \left\{ {\begin{array}{ll} \ge 0&{}\quad \phi ^{II}\in \left[ {0,\bar{{\phi }}^{II}} \right] \\ <0&{}\quad \phi ^{II}\in \left( {\bar{{\phi }}^{II},1} \right] \\ \end{array}} \right. \).

The sign of the difference \(V_R^I -V_R^{II} \) also depends on \(\phi ^{II}\) and it results:

$$\begin{aligned} V_R^I -V_R^{II} =\frac{\psi _3 \left( {\psi _1-c_L s\beta } \right) ^{4}-\left( {\psi _2 +\phi ^{II}\psi _1} \right) ^{3}\left[ {4a^{2}\mu _R \psi _1 \left( {1-\phi ^{II}} \right) \left( {\rho +\delta } \right) +b^{2}\mu _M \left( {\psi _2 +\psi _1 \phi ^{II}} \right) \left( {\delta +2\rho } \right) } \right] }{516\beta ^{2}\delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}} \end{aligned}$$

According to \(\phi ^{II}\), three cases may be displayed:

  1. (1)

    when \(\phi ^{II}=0, V_R^I -V_R^{II} =\frac{\psi _3 \left( {\psi _1 -c_L s\beta } \right) ^{4}-\psi _2^3 \left[ {4a^{2}\mu _R \psi _1 \left( {\rho +\delta } \right) +b^{2}\mu _M \psi _2 \left( {\delta +2\rho } \right) } \right] }{516\beta ^{2}\delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}>0\, \psi _1 -c_L s\beta >\psi _2 \);

  2. (2)

    when \(\phi ^{II}=1, V_R^I -V_R^{II} =\frac{\psi _3 \left( {\psi _1 -c_L s\beta } \right) ^{4}-\left( {\psi _2 +\psi _1 } \right) ^{4}b^{2}\mu _M \left( {\delta +2\rho } \right) }{516\beta ^{2}\delta \rho \mu _M \mu _R \left( {\delta +\rho } \right) ^{2}}<0\). Solving the numerator with respect to \(\psi _1 \) gives four solutions: two are not feasible, two are feasible and negative, \(V_R^I -V_R^{II} <0\) always holds;

  3. (3)

    Cases (1) and (2) allow one to verify that \(V_R^I -V_R^{II} \left\{ {\begin{array}{ll} \ge 0&{}\quad \phi ^{II}\in \left[ {0,\bar{{\bar{{\phi }}}}^{II}} \right] \\ <0&{}\quad \phi ^{II}\in \left( {\bar{{\bar{{\phi }}}}^{II},1} \right] \\ \end{array}} \right. \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Giovanni, P. Closed-loop supply chain coordination through incentives with asymmetric information. Ann Oper Res 253, 133–167 (2017). https://doi.org/10.1007/s10479-016-2334-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2334-x

Keywords

Navigation