Skip to main content
Log in

Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper addresses design and planning of an integrated forward/reverse logistics network over a planning horizon with multiple tactical periods. In the network, demand for new products and potential return of used products are stochastic. Furthermore, collection amounts of used products with different quality levels are assumed dependent on offered acquisition prices to customer zones. A uniform distribution function defines the expected price of each customer zone for one unit of each used product. Using two-stage stochastic programming, a mixed-integer linear programming model is proposed. To cope with demand and potential return uncertainty, Latin Hypercube Sampling method is applied to generate fan of scenarios and then, backward scenario reduction technique is used to reduce the number of scenarios. Due to the problem complexity, a novel simulation-based simulated annealing algorithm is developed to address large-sized test problems. Numerical results indicate the applicability of the model as well as the efficiency of the solution approach. In addition, the performance of the scenario generation method and the importance of stochasticity are examined for the optimization problem. Finally, several numerical experiments including sensitivity analysis on main parameters of the problem are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Akçalı, E., Çetinkaya, S., & Üster, H. (2009). Network design for reverse and closed-loop supply chains: An annotated bibliography of models and solution approaches. Networks, 53(3), 231–248. doi:10.1002/net.20267.

    Article  Google Scholar 

  • Aras, N., Aksen, D., & Tanuğur, A. G. (2008). Locating collection centers for incentive-dependent returns under a pick-up policy with capacitated vehicles. European Journal of Operational Research, 191(3), 1223–1240.

    Article  Google Scholar 

  • Aras, N., Aksen, D., & Tekin, T. (2010). Location and selective routing problem with pricing for the collection of used products. In Computers and Industrial Engineering (CIE), 2010 40th International Conference on, 2010 (pp. 1-6). IEEE.

  • Barros, A., Dekker, R., & Scholten, V. (1998). A two-level network for recycling sand: A case study. European Journal of Operational Research, 110(2), 199–214.

    Article  Google Scholar 

  • Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Berlin: Springer.

    Book  Google Scholar 

  • Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys (CSUR), 35(3), 268–308.

    Article  Google Scholar 

  • Cardoso, S. R., Barbosa-Póvoa, A. P. F., & Relvas, S. (2013). Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty. European Journal of Operational Research, 226(3), 436–451.

    Article  Google Scholar 

  • Chouinard, M., D’Amours, S., & Aït-Kadi, D. (2008). A stochastic programming approach for designing supply loops. International Journal of Production Economics, 113(2), 657–677.

    Article  Google Scholar 

  • Davis, P. S., & Ray, T. L. (1969). A branch-bound algorithm for the capacitated facilities location problem. Naval Research Logistics Quarterly, 16(3), 331–344. doi:10.1002/nav.3800160306.

    Article  Google Scholar 

  • De Rosa, V., Gebhard, M., Hartmann, E., & Wollenweber, J. (2013). Robust sustainable bi-directional logistics network design under uncertainty. International Journal of Production Economics, 145(1), 184–198.

    Article  Google Scholar 

  • Dupačová, J., Gröwe-Kuska, N., & Römisch, W. (2003). Scenario reduction in stochastic programming. Mathematical programming, 95(3), 493–511.

    Article  Google Scholar 

  • Easwaran, G., & Üster, H. (2010). A closed-loop supply chain network design problem with integrated forward and reverse channel decisions. IIE Transactions, 42(11), 779–792. doi:10.1080/0740817x.2010.504689.

    Article  Google Scholar 

  • Fattahi, M., Mahootchi, M., Govindan, K., & Husseini, S. M. M. (2015). Dynamic supply chain network design with capacity planning and multi-period pricing. Transportation Research Part E: Logistics and Transportation Review, 81, 169–202.

    Article  Google Scholar 

  • Fattahi, M., Mahootchi, M., Moattar Husseini, S., Keyvanshokooh, E., & Alborzi, F. (2015). Investigating replenishment policies for centralised and decentralised supply chains using stochastic programming approach. International Journal of Production Research, 53(1), 41–69.

    Article  Google Scholar 

  • Fleischmann, M., Beullens, P., Bloemhof-Ruwaard, J. M., & Van Wassenhove, L. N. (2001). The impact of product recovery on logistics network design. Production and Operations Management, 10(2), 156–173. doi:10.1111/j.1937-5956.2001.tb00076.x.

    Article  Google Scholar 

  • Fleischmann, M., Krikke, H. R., Dekker, R., & Flapper, S. D. P. (2000). A characterisation of logistics networks for product recovery. Omega, 28(6), 653–666. doi:10.1016/S0305-0483(00)00022-0.

    Article  Google Scholar 

  • Glover, F., & Kochenberger, G. A. (2003). Handbook of metaheuristics. Berlin: Springer.

    Book  Google Scholar 

  • Goetschalckx, M., Vidal, C. J., & Dogan, K. (2002). Modeling and design of global logistics systems: A review of integrated strategic and tactical models and design algorithms. European Journal of Operational Research, 143(1), 1–18.

    Article  Google Scholar 

  • Govindan, K., & Fattahi, M. (2015). Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain. International Journal of Production Economics. doi:10.1016/j.ijpe.2015.09.033.

  • Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603–626. doi:10.1016/j.ejor.2014.07.012.

    Article  Google Scholar 

  • Guide, V. D. R, Jr., Teunter, R. H., & Van Wassenhove, L. N. (2003). Matching demand and supply to maximize profits from remanufacturing. Manufacturing & Service Operations Management, 5(4), 303–316.

    Article  Google Scholar 

  • Guide, V. D. R. (2000). Production planning and control for remanufacturing: Industry practice and research needs. Journal of Operations Management, 18(4), 467–483.

    Article  Google Scholar 

  • Hsu, C.-I., & Li, H.-C. (2011). Reliability evaluation and adjustment of supply chain network design with demand fluctuations. International Journal of Production Economics, 132(1), 131–145.

    Article  Google Scholar 

  • Kannan, G., Sasikumar, P., & Devika, K. (2010). A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling. Applied Mathematical Modelling, 34(3), 655–670. doi:10.1016/j.apm.2009.06.021.

    Article  Google Scholar 

  • Keyvanshokooh, E., Fattahi, M., Seyed-Hosseini, S., & Tavakkoli-Moghaddam, R. (2013). A dynamic pricing approach for returned products in integrated forward/reverse logistics network design. Applied Mathematical Modelling, 37(24), 10182–10202.

    Article  Google Scholar 

  • Khatami, M., Mahootchi, M., & Farahani, R. Z. (2015). Benders’ decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties. Transportation Research Part E: Logistics and Transportation Review, 79, 1–21.

    Article  Google Scholar 

  • Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of Statistical Physics, 34(5–6), 975–986.

    Article  Google Scholar 

  • Lee, D.-H., & Dong, M. (2008). A heuristic approach to logistics network design for end-of-lease computer products recovery. Transportation Research Part E: Logistics and Transportation Review, 44(3), 455–474. doi:10.1016/j.tre.2006.11.003.

    Article  Google Scholar 

  • Lee, D.-H., & Dong, M. (2009). Dynamic network design for reverse logistics operations under uncertainty. Transportation Research Part E: Logistics and Transportation Review, 45(1), 61–71.

    Article  Google Scholar 

  • Lee, D.-H., Dong, M., & Bian, W. (2010). The design of sustainable logistics network under uncertainty. International Journal of Production Economics, 128(1), 159–166.

    Article  Google Scholar 

  • Lee, D.-H., Dong, M., Bian, W., & Tseng, Y.-J. (2007). Design of product recovery networks under uncertainty. Transportation Research Record: Journal of the Transportation Research Board, 2008(03), 19–25.

  • Listeş, O. (2007). A generic stochastic model for supply-and-return network design. Computers & Operations Research, 34(2), 417–442.

    Article  Google Scholar 

  • Lium, A.-G., Crainic, T. G., & Wallace, S. W. (2009). A study of demand stochasticity in service network design. Transportation Science, 43(2), 144–157.

    Article  Google Scholar 

  • Maslennikova, I., & Foley, D. (2000). Xerox’s approach to sustainability. Interfaces, 30(3), 226–233.

    Article  Google Scholar 

  • Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management—A review. European Journal of Operational Research, 196(2), 401–412. doi:10.1016/j.ejor.2008.05.007.

    Article  Google Scholar 

  • Montgomery, D. C., Montgomery, D. C., & Montgomery, D. C. (1984). Design and analysis of experiments (Vol. 7). New York: Wiley.

    Google Scholar 

  • Pishvaee, M. S., Farahani, R. Z., & Dullaert, W. (2010a). A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers & Operations Research, 37(6), 1100–1112. doi:10.1016/j.cor.2009.09.018.

    Article  Google Scholar 

  • Pishvaee, M. S., Jolai, F., & Razmi, J. (2009). A stochastic optimization model for integrated forward/reverse logistics network design. Journal of Manufacturing Systems, 28(4), 107–114.

    Article  Google Scholar 

  • Pishvaee, M. S., Kianfar, K., & Karimi, B. (2010b). Reverse logistics network design using simulated annealing. The International Journal of Advanced Manufacturing Technology, 47(1–4), 269–281.

    Article  Google Scholar 

  • Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. (2013a). A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Applied Mathematical Modelling, 37(1), 328–344.

    Article  Google Scholar 

  • Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. (2013b). A robust design for a closed-loop supply chain network under an uncertain environment. The International Journal of Advanced Manufacturing Technology, 66(5–8), 825–843.

    Article  Google Scholar 

  • Salema, M. I. G., Barbosa-Povoa, A. P., & Novais, A. Q. (2010). Simultaneous design and planning of supply chains with reverse flows: A generic modelling framework. European Journal of Operational Research, 203(2), 336–349.

    Article  Google Scholar 

  • Sheppard, E. (1974). A conceptual framework for dynamic location-allocation analysis. Environment and Planning A, 6(5), 547–564.

    Article  Google Scholar 

  • Sodhi, M. S. (2005). Managing demand risk in tactical supply chain planning for a global consumer electronics company. Production and Operations Management, 14(1), 69–79. doi:10.1111/j.1937-5956.2005.tb00010.x.

    Article  Google Scholar 

  • Soleimani, H., Seyyed-Esfahani, M., & Kannan, G. (2014). Incorporating risk measures in closed-loop supply chain network design. International Journal of Production Research, 52(6), 1843–1867.

    Article  Google Scholar 

  • Subulan, K., Baykasoğlu, A., Özsoydan, F. B., Taşan, A. S., & Selim, H. (2014). A case-oriented approach to a lead/acid battery closed-loop supply chain network design under risk and uncertainty. Journal of Manufacturing Systems, 37(1), 340–361.

  • Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and processes. Tokyo: Asian Productivity Organization.

  • Zarandi, M. F., Mosadegh, H., & Fattahi, M. (2013). Two-machine robotic cell scheduling problem with sequence-dependent setup times. Computers & Operations Research, 40(5), 1420–1434.

    Article  Google Scholar 

  • Zeballos, L. J., Méndez, C. A., Barbosa-Povoa, A. P., & Novais, A. Q. (2014). Multi-period design and planning of closed-loop supply chains with uncertain supply and demand. Computers & Chemical Engineering, 66, 151–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Govindan.

Appendices

Appendix 1

See Tables 910.

Table 9 Parameters’ generation for the test problems
Table 10 Available budgets for the test problems

Appendix 2

In order to calculate EVPI and VSS, the optimization problem (33) for each scenario is defined as follows:

$$\begin{aligned} F\left( {\mathbf{x}, \zeta ^{s}} \right) =\mathop {\hbox {Min}}\limits _{\mathbf{x} \in X} \, \mathbf{c}^{T}{} \mathbf{x} + Q\left( {\mathbf{x}, \zeta ^{s}} \right) , \qquad \forall s\in S. \end{aligned}$$
(33)

Here, WS, wait-and-see solution, can be calculated as follows:

$$\begin{aligned} \hbox {WS}=\sum _{s\in \mathrm{S}} {\pi ^{s}\times F\left( {\mathbf{x}, \zeta ^{s}} \right) } \end{aligned}$$

The EVPI is the difference between the optimal objective value of the recourse problem (RP), optimization problem (5), and WS as:

$$\begin{aligned} \hbox {EVPI}=\hbox {RP}-\hbox {WS}. \end{aligned}$$

By considering the expected values of stochastic parameters instead of them in problem (5), the Expected Value problem (EV) is defined as:

$$\begin{aligned} \hbox {EV} = \mathop {\hbox {Min}}\limits _{\mathbf{x} \in X} \, \mathbf{c}^{T}{} \mathbf{x} + Q\left( {\mathbf{x}, {\bar{\varvec{\upzeta }}}} \right) . \end{aligned}$$

The optimal solution of the EV is \({\bar{\mathbf{x}}}\left( {{\bar{\varvec{\upzeta }}}} \right) \) and hence, the expected objective value of using the EV solution (EEV) and VSS can be determined as:

$$\begin{aligned} \hbox {EEV}= & {} \mathbf{c}^{T}{\bar{\mathbf{x}}}\left( {{\bar{\varvec{\upzeta }}}} \right) +\sum _{s\in \mathrm{S}} {\pi ^{s}\times } Q\left( {{\bar{\mathbf{x}}}\left( {{\bar{\varvec{\upzeta }}}} \right) , \zeta ^{s}} \right) , \\ \hbox {VSS}= & {} \hbox {EEV}-\hbox {RP}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattahi, M., Govindan, K. Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products. Ann Oper Res 253, 193–225 (2017). https://doi.org/10.1007/s10479-016-2347-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2347-5

Keywords

Navigation