Skip to main content
Log in

An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper develops an EOQ inventory model that considers the demand rate as a function of stock and selling price. Shortages are permitted and two cases are studied: (i) complete backordering and (ii) partial backordering. The inventory model is for a deteriorating seasonal product. The product’s deterioration rate is controlled by investing in the preservation technology. The main purpose of the inventory model is to determine the optimum selling price, ordering frequency and preservation technology investment that maximizes the total profit. Additionally, the paper proves that the total profit is a concave function of selling price, ordering frequency and preservation technology investment. Therefore, a simple algorithm is proposed to obtain the optimal values for the decision variables. Several numerical examples are solved and studied along with a sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Burwell, T. H., Dave, D. S., Fitzpatrick, K. E., & Roy, M. R. (1997). Economic lot size model for price-dependent demand under quantity and freight discounts. International Journal of Production Economics, 48(2), 141–155.

    Article  Google Scholar 

  • Chakrabarti, T., & Chaudhuri, K. S. (1997). An EOQ model for deteriorating items with a linear trend in demand and shortages in all cycles. International Journal of Production Economics, 49(3), 205–213.

    Article  Google Scholar 

  • Chang, H. J., & Dye, C. Y. (2001). An inventory model for deteriorating items with partial backlogging and permissible delay in payments. International Journal of Systems Science, 32(3), 345–352.

    Article  Google Scholar 

  • Datta, T. K., & Paul, K. (2001). An inventory system with stock-dependent, price-sensitive demand rate. Production Planning & Control, 12(1), 13–20.

    Article  Google Scholar 

  • Dye, C. Y. (2013). The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega, 41(5), 872–880.

    Article  Google Scholar 

  • Dye, C. Y., & Hsieh, T. P. (2011). Deterministic ordering policy with price-and stock-dependent demand under fluctuating cost and limited capacity. Expert Systems with Applications, 38(12), 14976–14983.

    Article  Google Scholar 

  • Dye, C. Y., & Hsieh, T. P. (2012). An optimal replenishment policy for deteriorating items with effective investment in preservation technology. European Journal of Operational Research, 218(1), 106–112.

    Article  Google Scholar 

  • Giri, B. C., Chakrabarty, T., & Chaudhuri, K. S. (2000). A note on a lot sizing heuristic for deteriorating items with time-varying demands and shortages. Computers & Operations Research, 27(6), 495–505.

    Article  Google Scholar 

  • Goswami, A., & Chaudhuri, K. (1991). EOQ model for an inventory with a linear trend in demand and finite rate of replenishment considering shortages. International Journal of Systems Science, 22(1), 181–187.

    Article  Google Scholar 

  • Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), 1–16.

    Article  Google Scholar 

  • Hariga, M. A., & Benkherouf, L. (1994). Optimal and heuristic inventory replenishment models for deteriorating items with exponential time-varying demand. European Journal of Operational Research, 79(1), 123–137.

    Article  Google Scholar 

  • Harris, F. W. (1913). How many parts to make at once. Factory, The magazine of Management, 10(2), 135–136, 152.

  • He, Y., & Huang, H. (2013). Optimizing inventory and pricing policy for seasonal deteriorating products with preservation technology investment. Journal of Industrial Engineering, 2013, 1–7. doi:10.1155/2013/793568.

    Article  Google Scholar 

  • Hou, K. L. (2006). An inventory model for deteriorating items with stock-dependent consumption rate and shortages under inflation and time discounting. European Journal of Operational Research, 168(2), 463–474.

    Article  Google Scholar 

  • Hou, K. L., & Lin, L. C. (2006). An EOQ model for deteriorating items with price-and stock-dependent selling rates under inflation and time value of money. International Journal of Systems Science, 37(15), 1131–1139.

    Article  Google Scholar 

  • Hsieh, T. P., & Dye, C. Y. (2013). A production-inventory model incorporating the effect of preservation technology investment when demand is fluctuating with time. Journal of Computational and Applied Mathematics, 239, 25–36.

    Article  Google Scholar 

  • Hsu, P. H., Wee, H. M., & Teng, H. M. (2010). Preservation technology investment for deteriorating inventory. International Journal of Production Economics, 124(2), 388–394.

    Article  Google Scholar 

  • Jaggi, C. K., Tiwari, S., & Goel, S. K. (2017). Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Annals of Operations Research, 248(1), 253–280.

  • Jalan, A. K., & Chaudhuri, K. S. (1999). Structural properties of an inventory system with deterioration and trended demand. International Journal of Systems Science, 30(6), 627–633.

    Article  Google Scholar 

  • Jamal, A. M. M., Sarker, B. R., & Wang, S. (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of the Operational Research Society, 48(8), 826–833.

    Article  Google Scholar 

  • Lin, C., Tan, B., & Lee, W. C. (2000). An EOQ model for deteriorating items with time-varying demand and shortages. International Journal of Systems Science, 31(3), 391–400.

    Article  Google Scholar 

  • Liu, G., Zhang, J., & Tang, W. (2015). Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand. Annals of Operations Research, 226(1), 397–416.

    Article  Google Scholar 

  • Lu, L., Zhang, J., & Tang, W. (2016). Optimal dynamic pricing and replenishment policy for perishable items with inventory-level-dependent demand. International Journal of Systems Science, 47(6), 1480–1494.

    Article  Google Scholar 

  • Mishra, U. (2015). An EOQ model with time dependent Weibull deterioration, quadratic demand and partial backlogging. International Journal of Applied and Computational Mathematics, 1–19. doi:10.1007/s40819-015-0077-z

  • Mishra, U. (2015). An inventory model for deteriorating items under trapezoidal type demand and controllable deterioration rate. Production Engineering, 9(3), 351–365.

    Article  Google Scholar 

  • Mondal, B., Bhunia, A. K., & Maiti, M. (2003). An inventory system of ameliorating items for price dependent demand rate. Computers & industrial engineering, 45(3), 443–456.

    Article  Google Scholar 

  • Pal, S., Mahapatra, G. S., & Samanta, G. P. (2014). An inventory model of price and stock dependent demand rate with deterioration under inflation and delay in payment. International Journal of System Assurance Engineering and Management, 5(4), 591–601.

    Article  Google Scholar 

  • Sarkar, B., Saren, S., & Cárdenas-Barrón, L. E. (2014). An inventory model with trade-credit policy and variable deterioration for fixed lifetime products. Annals of Operations Research, 229(1), 677–702.

    Article  Google Scholar 

  • Shah, N. H. (2015). Retailer’s replenishment and credit policies for deteriorating inventory under credit period-dependent demand and bad-debt loss. TOP, 23(1), 298–312.

    Article  Google Scholar 

  • Skouri, K., Konstantaras, I., Manna, S. K., & Chaudhuri, K. S. (2011). Inventory models with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages. Annals of Operations Research, 191(1), 73–95.

    Article  Google Scholar 

  • Taleizadeh, A. A., Kalantari, S. S., & Cárdenas-Barrón, L. E. (2016). Pricing and lot sizing for an EPQ inventory model with rework and multiple shipments. TOP, 24(1), 143–155.

    Article  Google Scholar 

  • Teng, J. T., & Chang, C. T. (2005). Economic production quantity models for deteriorating items with price-and stock-dependent demand. Computers & Operations Research, 32(2), 297–308.

    Article  Google Scholar 

  • Wee, H. M. (1995). A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Computers & Operations Research, 22(3), 345–356.

    Article  Google Scholar 

  • Wee, H. M. (1997). A replenishment policy for items with a price-dependent demand and a varying rate of deterioration. Production Planning & Control, 8(5), 494–499.

    Article  Google Scholar 

  • Yang, C. T. (2010). The optimal order and payment policies for deteriorating items in discount cash flows analysis under the alternatives of conditionally permissible delay in payments and cash discount. Top, 18(2), 429–443.

    Article  Google Scholar 

  • You, P. S. (2005). Inventory policy for products with price and time-dependent demands. Journal of the Operational Research Society, 56(7), 870–873.

    Article  Google Scholar 

  • Zhang, J. X., Bai, Z. Y., & Tang, W. S. (2014). Optimal pricing policy for deteriorating items with preservation technology investment. Journal of Industrial and Management Optimization, 10(4), 1261–1277.

    Article  Google Scholar 

  • Zhang, J., Liu, G., Zhang, Q., & Bai, Z. (2015). Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract. Omega, 56, 37–49.

    Article  Google Scholar 

  • Zhang, J., Wei, Q., Zhang, Q., & Tang, W. (2016). Pricing, service and preservation technology investments policy for deteriorating items under common resource constraints. Computers & Industrial Engineering, 95, 1–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the valuable, constructive and detailed suggestions provided by three anonymous referees. The second author was supported by the Tecnológico de Monterrey Research Group in Industrial Engineering and Numerical Methods 0822B01006. The third author is grateful to his parents, wife, children Aditi Tiwari and Aditya Tiwari for their valuable support during the development of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo Eduardo Cárdenas-Barrón.

Appendices

Appendix 1: Proof of Theorem 1

The first and second partial derivatives of the profit function \(\textit{TP}(n,\alpha ,p)\) given by Eq. (17) with respect to n are given below:

$$\begin{aligned} \frac{\partial (\textit{TP}(n,\alpha ,p))}{\partial n}= & {} -\frac{cD(p)}{\lambda (\alpha )+\beta }\left( {1-\frac{\gamma ^{2}T^{2}}{2n^{2}}(\lambda (\alpha )+\beta )^{2}} \right) +hD(p)\left( {\frac{\gamma ^{2}T^{2}}{2n^{2}}} \right) \nonumber \\&-sD(p)\left( {-\frac{\gamma T^{2}}{n^{2}}+\frac{\gamma ^{2}T^{2}}{2n^{2}}+\frac{T^{2}}{n^{2}}} \right) -\frac{dD(p)}{\lambda (\alpha )+\beta }\left( {1-\frac{\gamma ^{2}T^{2}}{2n^{2}}(\lambda (\alpha )+\beta )^{2}} \right) ,\nonumber \\&+\frac{\beta dD(p)\gamma ^{2}T^{2}}{2n^{2}}-A \end{aligned}$$
(28)
$$\begin{aligned} \frac{\partial ^{2}(\textit{TP}(n,\alpha ,p))}{\partial n^{2}}= & {} -cD(p)\left( {\frac{\gamma ^{2}T^{2}}{n^{3}}(\lambda (\alpha )+\beta )} \right) -hD(p)\left( {\frac{\gamma ^{2}T^{2}}{n^{3}}} \right) -\frac{\beta dD(p)\gamma ^{2}T^{2}}{n^{3}} \nonumber \\&-\frac{sD(p)T^{2}}{n^{3}}\left( {2+\gamma (\gamma -2)} \right)<0 ,\; 0<\gamma <1. \end{aligned}$$
(29)

Clearly, from Eq. (29) it is concluded that the profit function given by Eq. (17) is concave in n. Notice that n must be an integer number. Thus, the determination of the optimal n is reduced to obtain a local optimal solution for n.

This completes the Proof of Theorem 1. \(\square \)

Appendix 2: Proof of Theorem 2

The first and second partial derivatives of the profit function \(\textit{TP}(n,\alpha ,p)\) given by Eq. (17) with respect to \(\alpha \) are as follows,

$$\begin{aligned} \frac{\partial (\textit{TP}(n,\alpha ,p))}{\partial \alpha }= & {} \frac{(c+d)\gamma ^{2}T^{2}\delta \lambda (\alpha )D(p)}{2n}-T, \end{aligned}$$
(30)
$$\begin{aligned} \frac{\partial ^{2}(\textit{TP}(n,\alpha ,p))}{\partial \alpha ^{2}}= & {} -\frac{(c+d)\gamma ^{2}T^{2}\delta ^{2}\lambda (\alpha )D(p)}{2n}-T<0. \end{aligned}$$
(31)

For straightforwardness, set \(H(\alpha )=\frac{(c+d)\gamma ^{2}T^{2}\delta \lambda (\alpha )D(p)}{2n}-T\)

$$\begin{aligned} \mathrm{State}\; \Delta _1 (n,p)= & {} \left. {H(\alpha )} \right| _{\alpha =0} =\frac{(c+d)\gamma ^{2}T^{2}\delta \lambda _0 D(p)}{2n}-T\\ \mathrm{and } \Delta _2 (n,p)= & {} \left. {H(\alpha )} \right| _{\alpha =\bar{{\alpha }}} =\frac{(c+d)\gamma ^{2}T^{2}\delta \lambda (\bar{{\alpha }})D(p)}{2n}-T. \end{aligned}$$

It is understandable that \({H}'(\alpha )<0\). Consequently \(H(\alpha )\) is strictly decreasing in \(\alpha \).

  1. (1)

    \(If\;\Delta _1 (n,p)\le 0, H(\alpha )\le 0\) and \(\forall \alpha \in \left[ {0,\bar{{\alpha }}} \right] \) then \(\textit{TP}(n,\alpha ,p)\) is decreasing in \(\alpha \in \left[ {0,\bar{{\alpha }}} \right] \). Thus, the optimal preservation cost is \(\alpha ^{*}=0.\)

  2. (2)

    \(If\;\Delta _2 (n,p)\ge 0, H(\alpha )\ge 0\) and \(\forall \alpha \in \left[ {0,\bar{{\alpha }}} \right] \) then \(\textit{TP}(n,\alpha ,p)\) is increasing in \(\alpha \in \left[ {0,\bar{{\alpha }}} \right] \).Therefore, the optimal preservation cost is \(\alpha ^{*}=\bar{{\alpha }}.\)

  3. (3)

    \(If\;\Delta _1 (n,p)>0\) and \(\Delta _2 (n,p)<0\) then, according to the intermediate value theorem, there is an unique value \(\alpha \in \left( {0,\bar{{\alpha }}} \right) \) that satisfies \(H(\alpha ^{*})=0 ,\) Thus,

    $$\begin{aligned} \frac{(c+d)\gamma ^{2}T^{2}\delta \lambda (\alpha ^{*})D(p)}{2n}-T=0. \end{aligned}$$
    (32)

This completes the Proof of Theorem 2. \(\square \)

Appendix 3: Proof of Theorem 3

The first and second partial derivatives of the profit function \(\textit{TP}(n,\alpha ,p)\) given by Eq. (17) with respect to p are presented below:

$$\begin{aligned} \begin{aligned} \frac{\partial (\textit{TP}(n,\alpha ,p))}{\partial p}=&(a-2bp)T+\frac{cb}{\lambda (\alpha )+\beta }\left( {n+\frac{\gamma ^{2}T^{2}}{2n}(\lambda (\alpha )+\beta )^{2}+(\lambda (\alpha )+\beta )T-\gamma T} \right) \\&+\,hb\left( {\frac{\gamma ^{2}T^{2}}{2n}} \right) +sb\left( {\frac{\gamma T^{2}}{n}-\frac{\gamma ^{2}T^{2}}{2n}-\frac{T^{2}}{n}} \right) +\frac{db}{\lambda (\alpha )+\beta }\\&\left\{ {n+\frac{\gamma ^{2}T^{2}}{2n}(\lambda (\alpha )+\beta )^{2}+(\lambda (\alpha )+\beta )T-\gamma T} \right\} bd\gamma T+\frac{\beta db\gamma ^{2}T^{2}}{2n} \\ \end{aligned} \end{aligned}$$
(33)

Set \(\frac{\partial (\textit{TP}(n,\alpha ,p))}{\partial p}=0\) and solve it for the optimal \(p^{*}\);

$$\begin{aligned}&\begin{aligned} \Rightarrow p^{*}=&\frac{c}{2(\lambda (\alpha )+\beta )}\left( {\frac{n}{T}+\frac{\gamma ^{2}T}{2n}(\lambda (\alpha )+\beta )^{2}+(\lambda (\alpha )+\beta )-\gamma } \right) +\frac{h}{2}\left( {\frac{\gamma ^{2}T}{2n}} \right) \\&+\,\frac{s}{2}\left( {\frac{\gamma T}{n}-\frac{\gamma ^{2}T}{2n}-\frac{T}{n}} \right) +\frac{d}{2(\lambda (\alpha )+\beta )}\\&\left( {\frac{n}{T}+\frac{\gamma ^{2}T}{2n}(\lambda (\alpha )+\beta )^{2}+(\lambda (\alpha )+\beta )-\gamma } \right) +\frac{d\gamma }{2}+\frac{\beta d\gamma ^{2}T}{4n}+\frac{a}{2b} . \\ \end{aligned} \end{aligned}$$
(34)
$$\begin{aligned}&\frac{\partial ^{2}\left( {\textit{TP}\left( {n,\alpha ,p} \right) } \right) }{\partial p^{2}}=-2bT<0 \end{aligned}$$
(35)

Hence, \(p^{*}\) is the global optimal that maximizes the profit function \(\textit{TP}(n,\alpha ,p)\) given by Eq. (17) for fixed values of n and \(\alpha \).

This completes the Proof of Theorem 3. \(\square \)

Appendix 4: Proof of Theorem 5

The first and second partial derivatives of the profit function \(\textit{TP}(n,\alpha ,p)\) given by Eq. (27) with respect to n are given below:

$$\begin{aligned}&\begin{aligned} \frac{\partial (\textit{TP}(n,\alpha ,p))}{\partial n}=&-\frac{cD(p)}{\lambda (\alpha )+\beta }\left( {1-\frac{\gamma ^{2}T^{2}}{2n^{2}}(\lambda (\alpha )+\beta )^{2}} \right) +hD(p)\left( {\frac{\gamma ^{2}T^{2}}{2n^{2}}} \right) \\&+\,sD(p)\left( {1-\gamma } \right) ^{2}\frac{\eta T^{2}}{2n^{2}}+c_1 D(p)\left( {1-\gamma } \right) ^{2}\frac{\eta T^{2}}{2n^{2}} \\&-\frac{dD(p)}{\lambda (\alpha )+\beta }\left( {1-\frac{\gamma ^{2}T^{2}}{2n^{2}}(\lambda (\alpha )+\beta )^{2}} \right) +\frac{\beta dD(p)\gamma ^{2}T^{2}}{2n^{2}}-A \\ \end{aligned} \end{aligned}$$
(36)
$$\begin{aligned}&\begin{aligned} \frac{\partial ^{2}(\textit{TP}(n,\alpha ,p))}{\partial n^{2}}=&-cD(p)\left( {\frac{\gamma ^{2}T^{2}}{n^{3}}(\lambda (\alpha )+\beta )} \right) -hD(p)\left( {\frac{\gamma ^{2}T^{2}}{n^{3}}} \right) -\frac{\beta dD(p)\gamma ^{2}T^{2}}{n^{3}} \\&-\,\left( {s+c_1 } \right) D(p)\left( {1-\gamma } \right) ^{2}\frac{\eta T^{2}}{n^{3}}<0 ,\; 0<\gamma <1. \\ \end{aligned} \end{aligned}$$
(37)

Clearly, the profit function given by Eq. (27) is concave in n.

This completes the Proof of Theorem 5. \(\square \)

Appendix 5: Proof of Theorem 7

The first and second partial derivatives of the profit function \(\textit{TP}(n,\alpha ,p)\) given by Eq. (27) with respect to p are presented below:

$$\begin{aligned} \begin{aligned} \frac{\partial (\textit{TP}(n,\alpha ,p))}{\partial p}=&(a-2bp)T+\frac{cb}{\lambda (\alpha )+\beta }\left( {n+\frac{\gamma ^{2}T^{2}}{2n}(\lambda (\alpha )+\beta )^{2}+(\lambda (\alpha )+\beta )T-\gamma T} \right) \\&+\,hb\left( {\frac{\gamma ^{2}T^{2}}{2n}} \right) +\left( {s+c_1 } \right) nb\left( {1-\gamma } \right) ^{2}\frac{\eta T^{2}}{n^{2}} \\&+\frac{db}{\lambda (\alpha )+\beta }\left\{ {n+\frac{\gamma ^{2}T^{2}}{2n}(\lambda (\alpha )+\beta )^{2}+(\lambda (\alpha )+\beta )T-\gamma T} \right\} \\&bd\gamma T+\frac{\beta db\gamma ^{2}T^{2}}{2n} \end{aligned} \end{aligned}$$
(38)

Set \(\frac{\partial (\textit{TP}(n,\alpha ,p))}{\partial p}=0\) and solve it for the optimal \(p^{*}\);

$$\begin{aligned}&\begin{aligned} \Rightarrow p^{*}=&\frac{c}{2(\lambda (\alpha )+\beta )}\left( {\frac{n}{T}+\frac{\gamma ^{2}T}{2n}(\lambda (\alpha )+\beta )^{2}+(\lambda (\alpha )+\beta )-\gamma } \right) +\frac{h}{2}\left( {\frac{\gamma ^{2}T}{2n}} \right) \\&+\,\left( {s+c_1 } \right) n\left( {1-\gamma } \right) ^{2}\frac{\eta T^{2}}{n^{2}}+\frac{d}{2(\lambda (\alpha )+\beta )}\\ {}&\left( {\frac{n}{T}+\frac{\gamma ^{2}T}{2n}(\lambda (\alpha )+\beta )^{2}+(\lambda (\alpha )+\beta )-\gamma } \right) +\frac{d\gamma }{2}+\frac{\beta d\gamma ^{2}T}{4n}+\frac{a}{2b} . \\ \end{aligned} \end{aligned}$$
(39)
$$\begin{aligned}&\frac{\partial ^{2}\left( {\textit{TP}\left( {n,\alpha ,p} \right) } \right) }{\partial p^{2}}=-2bT<0 \end{aligned}$$
(40)

Hence, \(p^{*}\) is the global optimal that maximizes the profit function \(\textit{TP}(n,\alpha ,p)\) given by Eq. (27) for fixed values of n and \(\alpha \).

This completes the Proof of Theorem 7. \(\square \)

Appendix 6: Algorithm for partial backlogging

Algorithm for partial backlogging

  • Step 1. Initialize \(n=1.\)

  • Step 2. Initialize \(m=1\) and set the value of \(p^{m}=p_0 .\)

  • Step 3. Compute \(\Delta _1 (n,p),\Delta _2 (n,p)\) and perform any one of the following three cases 1, 2 or 3.

    1. (1)

      If \(\Delta _1 (n,p)\le 0,\) then \(\alpha _1^m =0\). Determine \(p_1^m \) from Eq. (39).

    2. (2)

      If \(\Delta _2 (n,p)\ge 0,\) then \(\alpha _1^m =\bar{{\alpha }}\). Calculate \(p_1^m \) from Eq. (39).

    3. (3)

      If \(\Delta _1 (n,p)>0\) and \(\Delta _2 (n,p)<0\), Compute \(\alpha _1^m \) by solving (32). Substitute the value of \(\alpha _1^m \) into Eq. (39) and determine the corresponding value for \(p_1^m \).

    Set \(p^{m+1}=p_1^m \) and \(\alpha ^{m}=\alpha _1^m \).

  • Step 4. If \(\left| {p^{m+1}-p^{m}} \right| \le 10^{-4}\), then \((\alpha ^{*},p^{*})=(\alpha ^{m},p^{m+1})\) and go to Step 5. Otherwise, set \(m=m+1\) and go to Step 3.

  • Set 5. Compute \(\textit{TP}(n,\alpha ^{*},p^{*})\) with Eq. (27) which is the maximum for the profit function for a fixed value of n.

  • Step 6. Set \({n}'=n+1\), repeat Step 2 to 5 and find \(\textit{TP}({n}',\alpha ^{*},p^{*})\) with Eq. (27). Go to Step 7.

  • Step 7. If \(\textit{TP}({n}',\alpha ^{*},p^{*})\ge \textit{TP}(n,\alpha ^{*},p^{*})\), set \(n={n}'\). Go to Step 6. Otherwise go to Step 8.

  • Step 8. Set \((n^{*},\alpha ^{*},p^{*})=(n,\alpha ^{*},p^{*})\) and \(\textit{TP}(n,\alpha ^{*},p^{*})\) as the optimal solution.

  • Step 9. Compute the order quantity Q with Eq. (22).

  • Step 10. Calculate shortage level using Eq. (21).

  • Step 11. Determine the quantity of deteriorated items with Eq. (5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, U., Cárdenas-Barrón, L.E., Tiwari, S. et al. An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment. Ann Oper Res 254, 165–190 (2017). https://doi.org/10.1007/s10479-017-2419-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2419-1

Keywords

Mathematics Subject Classification

Navigation