Skip to main content
Log in

Well-posedness for the optimistic counterpart of uncertain vector optimization problems

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this article, we consider vector optimization problems with uncertain data. We first formulate optimistic counterparts of the reference problems and propose concepts of efficient solutions to such counterparts. We then introduce concepts of pointwise and global well-posedness for optimistic counterparts. Using the generalized Gerstewitz’s function and properties of elements in the image space, we establish the relationships between well-posedness properties for the reference problems and that for scalar optimization ones. Based on such relations, we have studied sufficient conditions of these well-posedness properties for the considered problems via the corresponding scalar problems. Finally, by virtue of a forcing function, the characterizations of the two concepts of well-posedness for such problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adida, E., & Perakis, G. (2010). Dynamic pricing and inventory control: robust versus stochastic uncertainty models-a computational study. Ann. Oper. Res., 181, 125–157.

    Article  Google Scholar 

  • Anh, L. Q., & Duy, T. Q. (2016). Tykhonov well-posedness for lexicographic equilibrium problems. Optimization, 65, 1929–1948.

    Article  Google Scholar 

  • Ansari, Q. H., & Yao, J. C. (2012). Recent developments in vector optimization. Berlin: Springer.

    Book  Google Scholar 

  • Bai, Y., Migórski, S., & Zeng, S. (2019). Well-posedness of a class of generalized mixed hemivariational-variational inequalities. Nonlinear Anal Real World Appl, 48, 424–444.

    Article  Google Scholar 

  • Beck, A., & Ben-Tal, A. (2009). Duality in robust optimization primal worst equals dual best. Oper Res Lett, 37, 1–6.

    Article  Google Scholar 

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton, US: Princeton University Press.

    Book  Google Scholar 

  • Bianchi, M., Kassay, G., & Pini, R. (2010). Well-posed equilibrium problems. Nonlinear Anal Theory Methods Appl, 72, 460–468.

    Article  Google Scholar 

  • Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Berlin: Springer.

    Book  Google Scholar 

  • Caprari, E., Baiardi, L. C., & Molho, E. (2019). Primal worst and dual best in robust vector optimization. Eur. J. Oper. Res., 275, 830–838.

    Article  Google Scholar 

  • Crespi, G., Kuroiwa, D., & Rocca, M. (2014). Convexity and global well-posedness in set-optimization. Taiwan. J. Math., 18, 1897–1908.

    Article  Google Scholar 

  • Crespi, G. P., Kuroiwa, D., & Rocca, M. (2017). Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization. Ann. Oper. Res., 251, 89–104.

    Article  Google Scholar 

  • Crespi, G. P., Papalia, M., & Rocca, M. (2009). Extended well-posedness of quasiconvex vector optimization problems. J. Optim. Theory Appl., 141, 285–297.

    Article  Google Scholar 

  • Crespi, G. P., Papalia, M., & Rocca, M. (2011). Extended well-posedness of vector optimization problems: The convex case. Taiwan. J. Math., 15, 1545–1559.

    Article  Google Scholar 

  • Darabi, M., & Zafarani, J. (2015). Tykhonov well-posedness for quasi-equilibrium problems. J. Optim. Theory Appl., 165, 458–479.

    Article  Google Scholar 

  • Dhingra, M., & Lalitha, C. (2016). Well-setness and scalarization in set optimization. Optim. Lett., 10, 1657–1667.

    Article  Google Scholar 

  • Dontchev, A. L., & Zolezzi, T. (1993). Well-posed optimization problems. Berlin: Springer.

    Book  Google Scholar 

  • Doolittle, E. K., Kerivin, H. L., & Wiecek, M. M. (2018). Robust multiobjective optimization with application to internet routing. Ann. Oper. Res., 271, 487–525.

    Article  Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization. Berlin: Springer.

    Google Scholar 

  • Ehrgott, M., Ide, J., & Schöbel, A. (2014). Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res., 239, 17–31.

    Article  Google Scholar 

  • Gutiérrez, C., Miglierina, E., Molho, E., & Novo, V. (2012). Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. Theory Methods Appl., 75, 1822–1833.

    Article  Google Scholar 

  • Hernández, E., & Rodríguez-Marín, L. (2007). Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl., 325, 1–18.

    Article  Google Scholar 

  • Ide, J., & Köbis, E. (2014). Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations. Math. Methods Oper. Res., 80, 99–127.

    Article  Google Scholar 

  • Ide, J., Köbis, E., Kuroiwa, D., Schöbel, A., & Tammer, C. (2014). The relationship between multi-objective robustness concepts and set-valued optimization. Fixed Point Theory Appl., 2014(83), 1–20.

    Google Scholar 

  • Ide, J., & Schöbel, A. (2016). Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spect., 38, 235–271.

    Article  Google Scholar 

  • Jahn, J. (2011). Vector optimization: theory, applications, and extensions. Berlin: Springer.

    Book  Google Scholar 

  • Jiao, L., & Lee, J. H. (2019). Finding efficient solutions in robust multiple objective optimization with sos-convex polynomial data. Ann. Oper. Res.,. https://doi.org/10.1007/s10479-019-03216-z.

    Article  Google Scholar 

  • Khan, A. A., Tammer, C., & Zălinescu, C. (2016). Set-valued optimization. Berlin: Springer.

    Google Scholar 

  • Khoshkhabar-amiranloo, S., & Khorram, E. (2015). Pointwise well-posedness and scalarization in set optimization. Math. Methods Oper. Res., 82, 195–210.

    Article  Google Scholar 

  • Klamroth, K., Köbis, E., Schöbel, A., & Tammer, C. (2013). A unified approach for different concepts of robustness and stochastic programming via non-linear scalarizing functionals. Optimization, 62, 649–671.

    Article  Google Scholar 

  • Kuroiwa, D. (1998). The natural criteria in set-valued optimization. RIMS Kokyuroku Kyoto Univ, 1031, 85–90.

    Google Scholar 

  • Kuroiwa, D. (2015). Generalized minimality in set optimization. In A. H. Hamel, F. Heyde, A. Löhne, B. Rudloff, & C. Schrage (Eds.), Set optimization and applications: the state of the art (pp. 293–311). Berlin: Springer.

    Chapter  Google Scholar 

  • Lalitha, C. S., & Bhatia, G. (2012). Levitin-Polyak well-posedness for parametric quasivariational inequality problem of the Minty type. Positivity, 16, 527–541.

    Article  Google Scholar 

  • Lee, J. H., & Lee, G. M. (2018). On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems. Ann. Oper. Res., 269, 419–438.

    Article  Google Scholar 

  • Miglierina, E., Molho, E., & Rocca, M. (2005). Well-posedness and scalarization in vector optimization. J. Optim. Theory Appl., 126, 391–409.

    Article  Google Scholar 

  • Morgan, J., & Scalzo, V. (2006). Discontinuous but well-posed optimization problems. SIAM J. Optim., 17, 861–870.

    Article  Google Scholar 

  • Popescu, I. (2007). Robust mean-covariance solutions for stochastic optimization. Oper. Res., 55, 98–112.

    Article  Google Scholar 

  • Salahi, M., Torabi, N., & Amiri, A. (2016). An optimistic robust optimization approach to common set of weights in DEA. Measurement, 93, 67–73.

    Article  Google Scholar 

  • Tanaka, T. (1997). Generalized semicontinuity and existence theorems for cone saddle points. Appl. Math. Optim., 36, 313–322.

    Article  Google Scholar 

  • Tykhonov, A. N. (1966). On the stability of the functional optimization problem. USSR Comput. Math. Math. Phys., 6, 28–33.

    Article  Google Scholar 

  • Vui, P. T., Anh, L. Q., & Wangkeeree, R. (2019). Levitin-Polyak well-posedness for set optimization problems involving set order relations. Positivity, 23, 599–616.

    Article  Google Scholar 

  • Zhang, W., Li, S., & Teo, K. L. (2009). Well-posedness for set optimization problems. Nonlinear Anal. Theory Methods Appl., 71, 3769–3778.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Editors and anonymous Referees for their helpful remarks and suggestions that helped us significantly improve the paper. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.01-2020.11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Q. Duy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, L.Q., Duy, T.Q. & Hien, D.V. Well-posedness for the optimistic counterpart of uncertain vector optimization problems. Ann Oper Res 295, 517–533 (2020). https://doi.org/10.1007/s10479-020-03840-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03840-0

Keywords

Mathematics Subject Classification

Navigation