Skip to main content
Log in

Benders decomposition for a reverse logistics network design problem in the dairy industry

  • S.I. : Computational Logistics in Food and Drink Industry
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Designing a value-creating whey recovery network is an important reverse logistics problem in the dairy industry. Whey is a byproduct of cheese making with many potential applications. Due to environmental legislation and economic advantages, raw whey should be processed into commercial products rather than disposed of into the environment. In this paper, we study a whey reverse logistics network design problem under demand uncertainty, where demand is the amount of raw whey produced by a set of cheese makers. We formulate the problem as a hierarchical facility location problem with two levels of facilities and use two-stage stochastic programming to tackle the issue of uncertainty. We consider a sample average approximation method to estimate the expected cost and employ an accelerated Benders decomposition algorithm to solve the resulting formulation to optimality. An extensive computational study, using 1200 benchmark instances of the problem, demonstrates the efficacy of our improved algorithm. Instances with as many as 20 cheese makers are shown to be solved by our proposed methodology an order of magnitude faster than the automatic Benders decomposition algorithm offered by a commercial solver. Optimal solutions of a real case study with 51 cheese makers together with useful managerial insights are also reported. The value of stochastic solution in the case study signifies the importance of considering the uncertainties that are inherent in the dairy industry. Our analysis of the case study shows that the total expected cost is increased by 28% if such uncertainties are ignored. Furthermore, this increase can become arbitrarily large as the outsourcing costs increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agrawal, S., Singh, R. K., & Murtaza, Q. (2015). A literature review and perspectives in reverse logistics. Resources, Conservation and Recycling, 97, 76–92.

    Article  Google Scholar 

  • Attari, M. Y. N., Pasandideh, S. H. R., Aghaie, A., & Niaki, S. T. A. (2018). A bi-objective robust optimization model for a blood collection and testing problem: An accelerated stochastic Benders decomposition. Annals of Operations Research, 1–39. https://doi.org/10.1007/s10479-018-3059-9.

  • Azad, N., & Hassini, E. (2019). A Benders decomposition method for designing reliable supply chain networks accounting for multimitigation strategies and demand losses. Transportation Science, 53(5), 1287–1312.

    Article  Google Scholar 

  • Banaszewska, A. (2014). Decision support modeling for milk valorization. Ph.D. Thesis, Wageningen University.

  • Banaszewska, A., Cruijssen, F., Claassen, G., & Van der Vorst, J. (2014). Effect and key factors of byproducts valorization: The case of dairy industry. Journal of Dairy Science, 97(4), 1893–1908.

    Article  Google Scholar 

  • Banaszewska, A., Cruijssen, F., Van Der Vorst, J., Claassen, G., & Kampman, J. (2013). A comprehensive dairy valorization model. Journal of Dairy Science, 96(2), 761–779.

    Article  Google Scholar 

  • Bansal, N., & Bhandari, B. (2016). Functional milk proteins: Production and utilization–whey-based ingredients. In P. L. H. McSweeney & J. A. O’Mahony (Eds.), Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects (pp. 67–98). Springer.

  • Batun, S., Denton, B. T., Huschka, T. R., & Schaefer, A. J. (2011). Operating room pooling and parallel surgery processing under uncertainty. INFORMS Journal on Computing, 23(2), 220–237.

    Article  Google Scholar 

  • Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2011). Duality and sensitivity analysis, chapter 6. Linear programming and network flows (4th ed., pp. 259–337). Wiley.

  • Belieres, S., Hewitt, M., Jozefowiez, N., Semet, F., & Van Woensel, T. (2020). A Benders decomposition-based approach for logistics service network design. European Journal of Operational Research, 286(2), 523–537.

    Article  Google Scholar 

  • Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.

    Article  Google Scholar 

  • Biel, M. & Johansson, M. (2019). Dynamic cut aggregation in L-shaped algorithms. arXiv preprint arXiv:1910.13752

  • Bilgen, B., & Çelebi, Y. (2013). Integrated production scheduling and distribution planning in dairy supply chain by hybrid modelling. Annals of Operations Research, 211(1), 55–82.

    Article  Google Scholar 

  • Birge, J. R. (1982). The value of the stochastic solution in stochastic linear programs with fixed recourse. Mathematical Programming, 24(1), 314–325.

    Article  Google Scholar 

  • Bodur, M., & Luedtke, J. R. (2016). Mixed-integer rounding enhanced Benders decomposition for multiclass service-system staffing and scheduling with arrival rate uncertainty. Management Science, 63(7), 2073–2091.

    Article  Google Scholar 

  • Bonami, P., Salvagnin, D., & Tramontani, A. (2020). Implementing automatic Benders decomposition in a modern MIP solver. In International conference on integer programming and combinatorial optimization (pp. 78–90). Springer.

  • Borodin, V., Bourtembourg, J., Hnaien, F., & Labadie, N. (2016). Handling uncertainty in agricultural supply chain management: A state of the art. European Journal of Operational Research, 254(2), 348–359.

    Article  Google Scholar 

  • Burke, J. (2006). Two mathematical programming models of cheese manufacture. Journal of Dairy Science, 89(2), 799–809.

    Article  Google Scholar 

  • Caramia, M., & Guerriero, F. (2010). A milk collection problem with incompatibility constraints. Interfaces, 40(2), 130–143.

    Article  Google Scholar 

  • Chatzipaschali, A. A., & Stamatis, A. G. (2012). Biotechnological utilization with a focus on anaerobic treatment of cheese whey: Current status and prospects. Energies, 5(9), 3492–3525.

    Article  Google Scholar 

  • Coelho, E. K. F., & Mateus, G. R. (2017). A capacitated plant location model for reverse logistics activities. Journal of Cleaner Production, 167, 1165–1176.

    Article  Google Scholar 

  • Cortez, N. M., Zoccal, R., Leite, J. L. B., Dias, J., & Cortez, M. A. S. (2015). Mapping dairy plants and location strategies for whey processing in Rio de Janeiro, Brazil. Journal of Bioenergy and Food Science, 2(2), 55–61. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1036156.

  • CPLEX (1988–2021). IBM ILOG CPLEX Optimization Studio. Retrieved from 11 August 2021. https://www.ibm.com/analytics/cplex-optimizer

  • Craig, K. L., Norback, J. P., & Johnson, M. E. (1989). A linear programming model integrating resource allocation and product acceptability for processed cheese products. Journal of Dairy Science, 72(11), 3098–3108.

    Article  Google Scholar 

  • Crainic, T. G., Hewitt, M., Maggioni, F., & Rei, W. (2021). Partial Benders decomposition: General methodology and application to stochastic network design. Transportation Science, 55(2), 414–435.

    Article  Google Scholar 

  • Crainic, T. G., Maggioni, F., Perboli, G., & Rei, W. (2018). Reduced cost-based variable fixing in two-stage stochastic programming. Annals of Operations Research. https://doi.org/10.1007/s10479-018-2942-8.

  • Crainic, T. G., Rei, W., Hewitt, M., & Maggioni, F. (2016). Partial Benders decomposition strategies for two-stage stochastic integer programs (pp. 1–40), CIRRELT.

  • Dai, L., Chen, C., & Birge, J. (2000). Convergence properties of two-stage stochastic programming. Journal of Optimization Theory and Applications, 106(3), 489–509.

    Article  Google Scholar 

  • Dantas, V., Oaigen, R., Santos, M., Marques, C., & Silva, F. (2016). Typology of dairy production systems in the eastern amazon, pará, Brasil. Livestock Research for Rural Development, 28, 1–10

  • Daskin, M. S. (2013). Extensions of location models. In Network and discrete location: Models, algorithms, and applications, Second Edition, chapter 8 (pp. 362–479). Wiley.

  • Dayarian, I., Crainic, T. G., Gendreau, M., & Rei, W. (2015). A branch-and-price approach for a multi-period vehicle routing problem. Computers & Operations Research, 55, 167–184.

    Article  Google Scholar 

  • de Brito, M. P., & Dekker, R. (2004). A framework for reverse logistics. In R. Dekker, M. Fleischmann, K. Inderfurth, & L. N. Van Wassenhove (Eds.), Reverse logistics: Quantitative models for closed-loop supply chains (pp. 3–27). Springer.

  • Doganis, P., & Sarimveis, H. (2007). Optimal scheduling in a yogurt production line based on mixed integer linear programming. Journal of Food Engineering, 80(2), 445–453.

    Article  Google Scholar 

  • Ebrahimi, S., Khoshalhan, F., & Ghaderzadeh, H. (2020). Optimization of Kurdistan–Iran dairy supply chain by considering byproducts. Agricultural Economics Research, 12(47), 25–48. In Persian.

    Google Scholar 

  • Elçi, Ö., & Hooker, J. N. (2020). Stochastic planning and scheduling with logic-based Benders decomposition. arXiv preprint arXiv:2012.14074

  • Emidio, J., Lima, R., Leal, C., & Madrona, G. (2021). How can mixed integer linear programming assist dairy manufacturers by integrating supply decisions and production planning? Journal of Agribusiness in Developing and Emerging Economies, 11(2), 178–193.

  • Esmaeilbeigi, R., Charkhgard, P., & Charkhgard, H. (2016). Order acceptance and scheduling problems in two-machine flow shops: New mixed integer programming formulations. European Journal of Operational Research, 251(2), 419–431.

    Article  Google Scholar 

  • Esmaeilbeigi, R., Eshragh, A., García-Flores, R., & Heydar, M. (2017). Whey reverse logistics network design: A stochastic hierarchical facility location model. In: G. Syme, D. Hatton MacDonald, B. Fulton, & J. Piantadosi (Eds.), MODSIM2017, 22nd international congress on modelling and simulation (pp. 1316–1322). Modelling and Simulation Society of Australia and New Zealand. https://doi.org/10.36334/modsim.2017.j5.esmaeilbeigi.

  • Esmaeilbeigi, R., Naderi, B., & Charkhgard, P. (2015). The type E simple assembly line balancing problem: A mixed integer linear programming formulation. Computers & Operations Research, 64, 168–177.

    Article  Google Scholar 

  • Farahani, R. Z., Hekmatfar, M., Fahimnia, B., & Kazemzadeh, N. (2014). Hierarchical facility location problem: Models, classifications, techniques, and applications. Computers & Industrial Engineering, 68, 104–117.

    Article  Google Scholar 

  • Fischetti, M., Ljubić, I., & Sinnl, M. (2016). Benders decomposition without separability: A computational study for capacitated facility location problems. European Journal of Operational Research, 253(3), 557–569.

    Article  Google Scholar 

  • Fontaine, P., Crainic, T. G., Jabali, O., & Rei, W. (2021). Scheduled service network design with resource management for two-tier multimodal city logistics. European Journal of Operational Research, 294(2), 558–570.

    Article  Google Scholar 

  • Fox, P. F., Guinee, T. P., Cogan, T. M., & McSweeney, P. L. H. (2017). Whey and whey products. In Fundamentals of Cheese science (pp. 755–769). Springer.

  • García-Flores, R., Martins, R., de Souza Filho, O. V., González, M., Mattos, C., Rosenthal, A., & Juliano, P. (2015). A novel facility and equipment selection model for whey utilisation: A Brazilian case study. Computers and Electronics in Agriculture, 117, 127–140.

    Article  Google Scholar 

  • Gholami-Zanjani, S. M., Klibi, W., Jabalameli, M. S., & Pishvaee, M. S. (2021). The design of resilient food supply chain networks prone to epidemic disruptions. International Journal of Production Economics, 233, 108001.

    Article  Google Scholar 

  • Gholizadeh, H., Jahani, H., Abareshi, A., & Goh, M. (2021). Sustainable closed-loop supply chain for dairy industry with robust and heuristic optimization. Computers & Industrial Engineering, 157, 107324.

    Article  Google Scholar 

  • Glover, J., Champion, D., Daniels, K., & Dainty, A. (2014). An institutional theory perspective on sustainable practices across the dairy supply chain. International Journal of Production Economics, 152, 102–111.

    Article  Google Scholar 

  • Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research, 263(1), 108–141.

    Article  Google Scholar 

  • Guan, Z., & Philpott, A. B. (2011). A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134(2), 289–299.

    Article  Google Scholar 

  • Guarnaschelli, A., Salomone, H. E., & Méndez, C. A. (2020). A stochastic approach for integrated production and distribution planning in dairy supply chains. Computers & Chemical Engineering, 140, 106966.

    Article  Google Scholar 

  • Gunn, E. A., MacDonald, C. A., Friars, A., & Caissie, G. (2014). Scotsburn dairy group uses a hierarchical production scheduling and inventory management system to control its ice cream production. Interfaces, 44(3), 253–268.

    Article  Google Scholar 

  • Haddadsisakht, A., & Ryan, S. M. (2018). Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax. International Journal of Production Economics, 195, 118–131.

    Article  Google Scholar 

  • Hewitt, M., Ortmann, J., & Rei, W. (2021). Decision-based scenario clustering for decision-making under uncertainty. Annals of Operations Research, 1–25. https://doi.org/10.1007/s10479-020-03843-x.

  • Hobbs, B. F., & Ji, Y. (1999). Stochastic programming-based bounding of expected production costs for multiarea electric power system. Operations Research, 47(6), 836–848.

    Article  Google Scholar 

  • Hosseininasab, A., & Gzara, F. (2020). Effects of feasibility cuts in Lagrangian relaxation for a two-stage stochastic facility location and network flow problem. Optimization Letters, 14(1), 171–193.

    Article  Google Scholar 

  • Jeihoonian, M., Kazemi Zanjani, M., & Gendreau, M. (2020). Dynamic reverse supply chain network design under uncertainty: Mathematical modeling and solution algorithm. International Transactions in Operational Research, 1–29. https://doi.org/10.1111/itor.12865.

  • Jia, H., & Shen, S. (2021). Benders cut classification via support vector machines for solving two-stage stochastic programs. INFORMS Journal on Optimization, 3(3), 278–297.

  • Johnson, H., Parvin, L., Garnett, I., DePeters, E., Medrano, J., & Fadel, J. (2007). Valuation of milk composition and genotype in cheddar cheese production using an optimization model of cheese and whey production. Journal of Dairy Science, 90(2), 616–629.

    Article  Google Scholar 

  • Jouzdani, J., Fathian, M., Makui, A., & Heydari, M. (2020). Robust design and planning for a multi-mode multi-product supply network: A dairy industry case study. Operational Research, 20(3), 1811–1840.

    Article  Google Scholar 

  • Jouzdani, J., & Govindan, K. (2021). On the sustainable perishable food supply chain network design: A dairy products case to achieve sustainable development goals. Journal of Cleaner Production, 278, 123060.

    Article  Google Scholar 

  • Juan, A. A., Keenan, P., Martí, R., McGarraghy, S., Panadero, J., Carroll, P., & Oliva, D. (2021). A review of the role of heuristics in stochastic optimisation: From metaheuristics to learnheuristics. Annals of Operations Research, 1–31. https://doi.org/10.1007/s10479-021-04142-9.

  • Kalantari Khalil Abad, A. R., & Pasandideh, S. H. R. (2020). Green closed-loop supply chain network design with stochastic demand: A new accelerated Benders decomposition method. Scientia Iranic, 1–32. https://doi.org/10.24200/sci.2020.53412.3249.

  • Katsaliaki, K., Galetsi, P., & Kumar, S. (2021). Supply chain disruptions and resilience: A major review and future research agenda. Annals of Operations Research, 1–38. https://doi.org/10.1007/s10479-020-03912-1.

  • Keith, A. J., & Ahner, D. K. (2021). A survey of decision making and optimization under uncertainty. Annals of Operations Research, 300, 319–353. https://doi.org/10.1007/s10479-019-03431-8.

  • Kerrigan, G. L., & Norback, J. (1986). Linear programming in the allocation of milk resources for cheese making. Journal of Dairy Science, 69(5), 1432–1440.

    Article  Google Scholar 

  • King, A., & Wallace, S. (2012). Modeling with stochastic programming. Springer Series in Operations Research and Financial Engineering. Springer.

  • Kleywegt, A. J., Shapiro, A., & Homem-de Mello, T. (2002). The sample average approximation method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2), 479–502.

    Article  Google Scholar 

  • Lahrichi, N., Gabriel Crainic, T., Gendreau, M., Rei, W., & Rousseau, L.-M. (2015). Strategic analysis of the dairy transportation problem. Journal of the Operational Research Society, 66(1), 44–56.

    Article  Google Scholar 

  • Loizidou, M. (2016). Waste valorization and management. Waste and Biomass Valorization, 7(4), 645–648.

    Article  Google Scholar 

  • Maggioni, F., & Wallace, S. W. (2012). Analyzing the quality of the expected value solution in stochastic programming. Annals of Operations Research, 200(1), 37–54.

    Article  Google Scholar 

  • Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria. Operations Research, 29(3), 464–484.

    Article  Google Scholar 

  • Mardan, E., Govindan, K., Mina, H., & Gholami-Zanjani, S. M. (2019). An accelerated Benders decomposition algorithm for a bi-objective green closed loop supply chain network design problem. Journal of Cleaner Production, 235, 1499–1514.

    Article  Google Scholar 

  • Martin, R. K. (2012). Large scale linear and integer optimization: A unified approach. Springer.

  • Martins, R. S., de Souza Filho, O. V., & da Silva Lobo, D. (2013). A logística como direcionador para a formação de cadeia de valor: Um estudo aplicado na indústria de beneficiamento do soro de queijo. Organizações Rurais & Agroindustriais, 15(1), 60–74.

    Google Scholar 

  • Masson, R., Lahrichi, N., & Rousseau, L.-M. (2016). A two-stage solution method for the annual dairy transportation problem. European Journal of Operational Research, 251(1), 36–43.

    Article  Google Scholar 

  • Melo, M. T., Nickel, S., & Saldanha-Da-Gama, F. (2009). Facility location and supply chain management—A review. European Journal of Operational Research, 196(2), 401–412.

    Article  Google Scholar 

  • Mestre, A. M., Oliveira, M. D., & Barbosa-Póvoa, A. P. (2015). Location-allocation approaches for hospital network planning under uncertainty. European Journal of Operational Research, 240(3), 791–806.

    Article  Google Scholar 

  • Mohamed, I. B., Klibi, W., & Vanderbeck, F. (2020). Designing a two-echelon distribution network under demand uncertainty. European Journal of Operational Research, 280(1), 102–123.

    Article  Google Scholar 

  • Mohammad, F. (2020). A data-driven approach for supply chain network design under uncertainty with consideration of social concerns. Annals of Operations Research, 288(1), 265–284.

    Article  Google Scholar 

  • Munoz, F. D., Hobbs, B. F., & Watson, J.-P. (2016). New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints. European Journal of Operational Research, 248(3), 888–898.

    Article  Google Scholar 

  • Narula, S. C. (1984). Hierarchical location-allocation problems: A classification scheme. European Journal of Operational Research, 15(1), 93–99.

    Article  Google Scholar 

  • Nath, A., Verasztó, B., Basak, S., Koris, A., Kovács, Z., & Vatai, G. (2016). Synthesis of lactose-derived nutraceuticals from dairy waste whey—A review. Food and Bioprocess Technology, 9(1), 16–48.

    Article  Google Scholar 

  • Oğuz, M., Bektaş, T., & Bennell, J. A. (2018). Multicommodity flows and Benders decomposition for restricted continuous location problems. European Journal of Operational Research, 266(3), 851–863.

    Article  Google Scholar 

  • Ong, K. L., Kaur, G., Pensupa, N., Uisan, K., & Lin, C. S. K. (2018). Trends in food waste valorization for the production of chemicals, materials and fuels: Case study south and southeast Asia. Bioresource Technology, 248,(Part A):100–112

  • Ortiz-Astorquiza, C., Contreras, I., & Laporte, G. (2018). Multi-level facility location problems. European Journal of Operational Research, 267(3), 791–805.

    Article  Google Scholar 

  • Pantuso, G., Boomsma, T. K., et al. (2020). On the number of stages in multistage stochastic programs. Annals of Operations Research, 292(2), 581–603.

    Article  Google Scholar 

  • Papadatos, A., Berger, A., Pratt, J., & Barbano, D. (2002). A nonlinear programming optimization model to maximize net revenue in cheese manufacture. Journal of Dairy Science, 85(11), 2768–2785.

    Article  Google Scholar 

  • Paredes-Belmar, G., Lüer-Villagra, A., Marianov, V., Cortés, C. E., & Bronfman, A. (2017). The milk collection problem with blending and collection points. Computers and Electronics in Agriculture, 134, 109–123.

    Article  Google Scholar 

  • Paredes-Belmar, G., Marianov, V., Bronfman, A., Obreque, C., & Lüer-Villagra, A. (2016). A milk collection problem with blending. Transportation Research Part E: Logistics and Transportation Review, 94, 26–43.

    Article  Google Scholar 

  • Parragh, S. N., Tricoire, F., & Gutjahr, W. J. (2021). A Branch-and-Benders-cut algorithm for a bi-objective stochastic facility location problem. OR Spectrum, 1–41. https://doi.org/10.1007/s00291-020-00616-7.

  • Pay, B. S., & Song, Y. (2020). Partition-based decomposition algorithms for two-stage stochastic integer programs with continuous recourse. Annals of Operations Research, 284(2), 583–604.

    Article  Google Scholar 

  • Petridis, K. (2015). Optimal design of multi-echelon supply chain networks under normally distributed demand. Annals of Operations Research, 227(1), 63–91.

    Article  Google Scholar 

  • Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2014). An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain. Transportation Research Part E: Logistics and Transportation Review, 67, 14–38.

    Article  Google Scholar 

  • Poojari, C. A., & Beasley, J. E. (2009). Improving Benders decomposition using a genetic algorithm. European Journal of Operational Research, 199(1), 89–97.

    Article  Google Scholar 

  • Prajapati, H., Kant, R., & Shankar, R. (2019). Bequeath life to death: State-of-art review on reverse logistics. Journal of Cleaner Production, 211, 503–520.

    Article  Google Scholar 

  • Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decomposition algorithm: A literature review. European Journal of Operational Research, 259(3), 801–817.

    Article  Google Scholar 

  • Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2018). Accelerating the Benders decomposition method: Application to stochastic network design problems. SIAM Journal on Optimization, 28(1), 875–903.

    Article  Google Scholar 

  • Ramirez-Pico, C., & Moreno, E. (2021). Generalized adaptive partition-based method for two-stage stochastic linear programs with fixed recourse. Mathematical Programming, 1–20. https://doi.org/10.1007/s10107-020-01609-8.

  • Rohaninejad, M., Sahraeian, R., & Tavakkoli-Moghaddam, R. (2018). An accelerated Benders decomposition algorithm for reliable facility location problems in multi-echelon networks. Computers & Industrial Engineering, 124, 523–534.

    Article  Google Scholar 

  • Rujeerapaiboon, N., Schindler, K., Kuhn, D., & Wiesemann, W. (2019). Size matters: Cardinality-constrained clustering and outlier detection via conic optimization. SIAM Journal on Optimization, 29(2), 1211–1239.

    Article  Google Scholar 

  • Ryan, M. P., & Walsh, G. (2016). The biotechnological potential of whey. Reviews in Environmental Science and Bio/Technology, 15(3), 479–498.

    Article  Google Scholar 

  • Şahin, G., & Süral, H. (2007). A review of hierarchical facility location models. Computers & Operations Research, 34(8), 2310–2331.

    Article  Google Scholar 

  • Santibanez-Gonzalez, E. D., & Diabat, A. (2013). Solving a reverse supply chain design problem by improved Benders decomposition schemes. Computers & Industrial Engineering, 66(4), 889–898.

    Article  Google Scholar 

  • Schwarz, H., Kotthoff, L., Hoos, H., Fichtner, W., & Bertsch, V. (2019). Improving the computational efficiency of stochastic programs using automated algorithm configuration: An application to decentralized energy systems. Annals of Operations Research, 1–22. https://doi.org/10.1007/s10479-018-3122-6.

  • Sel, Ç., & Bilgen, B. (2015). Quantitative models for supply chain management within dairy industry: A review and discussion. European Journal of Industrial Engineering, 9(5), 561–594.

    Article  Google Scholar 

  • Sel, C., Bilgen, B., Bloemhof-Ruwaard, J., & van der Vorst, J. G. (2015). Multi-bucket optimization for integrated planning and scheduling in the perishable dairy supply chain. Computers & Chemical Engineering, 77, 59–73.

    Article  Google Scholar 

  • Sethanan, K., & Pitakaso, R. (2016). Differential evolution algorithms for scheduling raw milk transportation. Computers and Electronics in Agriculture, 121, 245–259.

    Article  Google Scholar 

  • Shapiro, A. (2008). Stochastic programming approach to optimization under uncertainty. Mathematical Programming, 112(1), 183–220.

    Article  Google Scholar 

  • Silveira, E., & Freitas, W. (2011). Geração e destinação de soro de queijo numa indústria de laticínio do estado da Bahia. Retrieved from 11 August 2021. https://www.webartigos.com/artigos/geracao-e-destinacao-de-soro-de-queijo-numa-industria-de-laticinio-do-estado-da-bahia/60012/. Posted on February 24, 2011.

  • Smithers, G. W. (2008). Whey and whey proteins-from ‘gutter-to-gold’. International Dairy Journal, 18(7), 695–704.

  • Smithers, G. W. (2015). Whey-ing up the options—yesterday, today and tomorrow. International Dairy Journal, 48, 2–14.

    Article  Google Scholar 

  • Song, Y., & Luedtke, J. (2015). An adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse. SIAM Journal on Optimization, 25(3), 1344–1367.

    Article  Google Scholar 

  • Stefansdottir, B., & Grunow, M. (2018). Selecting new product designs and processing technologies under uncertainty: Two-stage stochastic model and application to a food supply chain. International Journal of Production Economics, 201, 89–101.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (2014). Vehicle routing: Problems, methods, and applications (2nd ed.). MOS-SIAM Series on Optimization: Society for Industrial and Applied Mathematics.

  • Trukhanov, S., Ntaimo, L., & Schaefer, A. (2010). Adaptive multicut aggregation for two-stage stochastic linear programs with recourse. European Journal of Operational Research, 206(2), 395–406.

    Article  Google Scholar 

  • Vaidyanathan, B., Ahuja, R. K., Orlin, J. B., & Magnanti, T. L. (2016). Multicommodity flows. In S. Arumugam, A. Brandstädt, T. Nishizeki, & K. Thulasiraman (Eds.), Handbook of graph theory, combinatorial optimization, and algorithms (pp. 157–174). Chapman and Hall/CRC.

  • Validi, S., Bhattacharya, A., & Byrne, P. (2014). A case analysis of a sustainable food supply chain distribution system—A multi-objective approach. International Journal of Production Economics, 152, 71–87.

    Article  Google Scholar 

  • Validi, S., Bhattacharya, A., & Byrne, P. J. (2015). A solution method for a two-layer sustainable supply chain distribution model. Computers & Operations Research, 54, 204–217.

    Article  Google Scholar 

  • Validi, S., Bhattacharya, A., & Byrne, P. J. (2020). Sustainable distribution system design: A two-phase doe-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model. Annals of Operations Research, 290(1), 191–222.

    Article  Google Scholar 

  • Validi, S., Bhattacharya, A., & Byrne, P. J. (2021). An evaluation of three doe-guided meta-heuristic-based solution methods for a three-echelon sustainable distribution network. Annals of Operations Research, 296(1), 421–469.

    Article  Google Scholar 

  • van Ackooij, W., de Oliveira, W., & Song, Y. (2018). Adaptive partition-based level decomposition methods for solving two-stage stochastic programs with fixed recourse. INFORMS Journal on Computing, 30(1), 57–70.

    Article  Google Scholar 

  • Wang, K., & Yang, Q. (2014). Hierarchical facility location for the reverse logistics network design under uncertainty. Journal of Uncertain Systems, 8(4), 255–270.

    Google Scholar 

  • Wouda, F. H., van Beek, P., van der Vorst, J. G., & Tacke, H. (2002). An application of mixed-integer linear programming models on the redesign of the supply network of Nutricia dairy & drinks group in Hungary. OR Spectrum, 24(4), 449–465.

    Article  Google Scholar 

  • Yang, H., Gupta, J. N., Yu, L., & Zheng, L. (2016). An improved L-shaped method for solving process flexibility design problems. Mathematical Problems in Engineering, 2016. https://doi.org/10.1155/2016/4329613.

  • Zhang, H., Vittal, V., & Heydt, G. (2015). An aggregated multi-cut decomposition algorithm for two-stage transmission expansion planning problems. In 2015 IEEE Power & Energy Society General Meeting, IEEE (pp. 1–5).

Download references

Acknowledgements

This study was funded by the Australian Research Council, training centre for food and beverage supply chain optimization (Grant ID: IC140100032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasul Esmaeilbeigi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeilbeigi, R., Middleton, R., García-Flores, R. et al. Benders decomposition for a reverse logistics network design problem in the dairy industry. Ann Oper Res (2021). https://doi.org/10.1007/s10479-021-04309-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-021-04309-4

Keywords

Navigation