Skip to main content
Log in

Indole-3-acetic acid in plant–microbe interactions

  • Invited Review
  • Antonie van Leeuwenhoek 80th Anniversary Issue
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant–microbe interactions including phytostimulation and phytopathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd-Alla MH, El-Sayed EA, Rasmey AM (2013) Indole-3-acetic acid (IAA) production by Streptomyces atrovirens isolated from rhizospheric soil in Egypt. J Biol Earth Sci 3:B182–B193

    CAS  Google Scholar 

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    CAS  PubMed  Google Scholar 

  • Acuña J, Jorquera MA, Martínez O, Menezes-Blackburn D, Fernández MT, Marschner P, Greiner R, Mora M (2011) Indole acetic acid and phytase activity produced by rhizosphere bacilli as affected by pH and metals. J Soil Sci Plant Nutr 11:1–12

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82:313–319

    CAS  Google Scholar 

  • Ahmed M, Stal LJ, Hasnain S (2010) Production of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9. J Microbiol Biotechnol 20:1259–1265

    CAS  PubMed  Google Scholar 

  • Akbari GA, Arab SM, Alikhani HA, Allahdadi I, Arzanesh MH (2007) Isolation and selection of indigenous Azospirillum spp. and the IAA of superior strains effects on wheat roots. World J Agric Sci 3:523–529

    Google Scholar 

  • Aldesuquy H, Mansour F, Abo-Hamed S (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol (Praha) 43:465–470

    Google Scholar 

  • Alemayehu D, Gordon L, O’Mahony M, O’Leary N, Dobson A (2004) Cloning and functional analysis by gene disruption of a novel gene involved in indigo production and fluoranthene metabolism in Pseudomonas alcaligenes PA-10. FEMS Microbiol Lett 239:285–293

    CAS  PubMed  Google Scholar 

  • Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414

    CAS  PubMed  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547

    CAS  PubMed  Google Scholar 

  • Ali B, Sabri AN, Hasnain S (2010) Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World J Microbiol Biotechnol 26:1379–1384

    CAS  Google Scholar 

  • Apine OA, Jadhav JP (2011) Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol 110:1235–1244

    CAS  PubMed  Google Scholar 

  • Asano Y, Kato Y (1998) Z-phenylacetaldoxime degradation by a novel aldoxime dehydratase from Bacillus sp. strain OxB-1. FEMS Microbiol Lett 158:185–190

    CAS  Google Scholar 

  • Asano Y, Fujishiro K, Tani Y, Yamada H (1982a) Aliphatic nitrile hydratase from Arthrobacter sp. J-1 purification and characterization. Agric Biol Chem 46:1165–1174

    CAS  Google Scholar 

  • Asano Y, Tachibana M, Tani Y, Yamada H (1982b) Purification and characterization of amidase which participates in nitrile degradation. Agric Biol Chem 46:1175–1181

    CAS  Google Scholar 

  • Baca BE, Soto-Urzua L, Xochihua-Corona YG, Cuervo-Garcia A (1994) Characterization of two aromatic amino acid aminotransferases and production of indoleacetic acid in Azospirillum strains. Soil Biol Biochem 26:57–63

    CAS  Google Scholar 

  • Balaji N, Lavanya SS, Muthamizhselvi S, Tamilarasan K (2012) Optimization of fermentation conditions for indole acetic acid production by Pseudomonas species. Int J Adv Biotechnol Res 3:797–803

    CAS  Google Scholar 

  • Baudoin E, Lerner A, Mirza MS, El Zemrany H, Prigent-Combaret C, Jurkevich E, Spaepen S, Vanderleyden J, Nazaret S, Okon Y, Moenne-Loccoz Y (2010) Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Res Microbiol 161:219–226

    CAS  PubMed  Google Scholar 

  • Beyeler M, Keel C, Michaux P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol Ecol 28:225–233

    CAS  Google Scholar 

  • Bhalla TC, Kumar H (2005) Nocardia globerula NHB-2: a versatile nitrile-degrading organism. Can J Microbiol 51:705–708

    CAS  PubMed  Google Scholar 

  • Bharucha U, Kamlesh P (2013) Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric Res 2:215–221

    Google Scholar 

  • Bhattacharyya R (2006) Effects of heavy metals on growth and indole acetic acid production by Rhizobium sp. Bangladesh J Bot 35:63–69

    Google Scholar 

  • Bhowmick P, Basu P (1987) Indoleacetic acid production by Rhizobium sp. from a leguminous tree, Erythrina indica. Folia Microbiol (Praha) 32:142–148

    CAS  Google Scholar 

  • Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R (2006) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol 185:373–382

    CAS  PubMed  Google Scholar 

  • Bianco C, Imperlini E, Defez R (2009) Legumes like more IAA. Plant Signal Behav 4:763–765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blakey AJ, Colby J, Williams E, O’Reilly C (1995) Regio-and stereo-specific nitrile hydrolysis by the nitrile hydratase from Rhodococcus AJ270. FEMS Microbiol Lett 129:57–61

    CAS  Google Scholar 

  • Blumer C, Heeb S, Pessi G, Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96:14073–14078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandl MT, Lindow SE (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl Environ Microbiol 62:4121–4128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandl MT, Clark EM, Lindow SE (1996) Characterization of the indole-3-acetic acid (IAA) biosynthetic pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro. Can J Microbiol 42:586–592

    CAS  Google Scholar 

  • Brandão PF, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69:5754–5766

    Google Scholar 

  • Brummell DA, Lashbrook CC, Bennett AB (1994) Plant endo-1, 4-β-D-glucanases: structure, properties, and physiological function. ACS Symp Ser 566:100–129

  • Cantarella M, Cantarella L, Gallifuoco A, Spera A (2006) Use of a UF-membrane reactor for controlling selectively the nitrile hydratase–amidase system in Microbacterium imperial CBS 498-74 resting cells: case study: benzonitrile conversion. Enzyme Microb Technol 38:126–134

    CAS  Google Scholar 

  • Carreño-Lopez R, Campos-Reales N, Elmerich C, Baca BE (2000) Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Mol Gen Genet 264:521–530

    PubMed  Google Scholar 

  • Castro-Guerrero J, Romero A, Aguilar JJ, Xiqui ML, Sandoval JO, Baca BE (2012) The hisC1 gene, encoding aromatic amino acid aminotransferase-1 in Azospirillum brasilense Sp7, expressed in wheat. Plant Soil 356:139–150

    CAS  Google Scholar 

  • Catalá C, Rose JK, Bennett AB (2000) Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol 122:527–534

    PubMed Central  PubMed  Google Scholar 

  • Cernadas RA, Benedetti CE (2009) Role of auxin and gibberellin in citrus canker development and in the transcriptional control of cell-wall remodeling genes modulated by Xanthomonas axonopodis pv. citri. Plant Sci 177(3):190–195

    CAS  Google Scholar 

  • Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62(1):173–181

    CAS  PubMed  Google Scholar 

  • Chen R, Baluška F (2013) Polar auxin transport. Signal Commun Plants. 17:1–295

    Google Scholar 

  • Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J et al (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 104:20131–20136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark E, Manulis S, Ophir Y, Barash I, Gafni Y (1993) Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytopathology 83:234–240

    CAS  Google Scholar 

  • Claus G, Kutzner HJ (1983) Degradation of indole by Alcaligenes sp. Syst Appl Microbiol 4:169–180

    CAS  PubMed  Google Scholar 

  • Cleland R (1981) Wall extensibility: hormones and wall extension. In: Plant Carbohydrates II. Springer, pp 255–273

  • Cleland RE (2010) Auxin and cell elongation. In: Plant Hormones. Springer, pp 204–220

  • Coffey L, Owens E, Tambling K, O’Neill D, O’Connor L, O’Reilly C (2010) Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera. Antonie Van Leeuwenhoek 98:455–463

    CAS  PubMed  Google Scholar 

  • Comai L, Kosuge T (1980) Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J Bacteriol 143:950–957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Comai L, Kosuge T (1982) Cloning and characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J Bacteriol 149:40–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Contesto C, Milesi S, Mantelin S, Zancarini A, Desbrosses G, Varoquaux F, Bellini C, Kowalczyk M, Touraine B (2010) The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232:1455–1470

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Google Scholar 

  • Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirilium brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243:463

    CAS  PubMed  Google Scholar 

  • Costacurta A, Mazzafera P, Rosato YB (1998) Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. FEMS Microbiol Lett 159:215–220

    CAS  Google Scholar 

  • Datta C, Basu PS (2000) Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res 155:123–127

    CAS  PubMed  Google Scholar 

  • Davies PJ (1995) Plant hormones: physiology, biochemistry, and molecular biology. Kluwer Academic, Boston

    Google Scholar 

  • De P, Basu P (1996) Growth behaviour and IAA production by a Rhizobium sp. isolated from root nodules of a leguminous medicinal herb, Tephrosea purpurea Pers., in culture. Microbiol Res 151:71–76

    CAS  Google Scholar 

  • Deslandes B, Gariépy C, Houde A (2001) Review of microbiological and biochemical effects of skatole on animal production. Livest Prod Sci 71:193–200

    Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    CAS  PubMed  Google Scholar 

  • Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78:1404–1410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donati AJ, Lee H, Leveau JH, Chang W (2013) Effects of Indole-3-Acetic Acid on the Transcriptional Activities and Stress Tolerance of Bradyrhizobium japonicum. PloS one 8:e76559

  • Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants?. Res Microbiol

  • Duan J (2012) Sequence Analysis of the genome of the plant growth-promoting bacterium Pseudomonas putida UW4. Dissertation. University of Waterloo

  • Ebenau-Jehle C, Thomas M, Scharf G, Kockelkorn D, Knapp B, Schühle K, Heider J, Fuchs G (2012) Anaerobic metabolism of indoleacetate. J Bacteriol 194:2894–2903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egebo L, Nielsen S, Jochimsen B (1991) Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 173:4897–4901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egland PG, Harwood CS (1999) BadR, a new MarR family member, regulates anaerobic benzoate degradation by Rhodopseudomonas palustris in concert with AadR, an Fnr family member. J Bacteriol 181:2102–2109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eklund DM, Thelander M, Landberg K, Ståldal V, Nilsson A, Johansson M, Valsecchi I, Pederson ERA, Kowalczyk M, Ljung K, Ronne H, Sundberg E (2010) Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development 137:1275–1284

    CAS  PubMed  Google Scholar 

  • El-Khawas H, Adachi K (1999) Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fertility Soils 28:377–381

    CAS  Google Scholar 

  • El-Mahrouk ME, Belal EBA (2007) Production of indole acetic acid (bioauxin) from Azotobacter sp. isolate and its effect on callus induction of Dieffenbachia maculata cv. Marianne. Acta Biologica Szegediensis 51:53–59

    Google Scholar 

  • El-Shanshoury AR (1991) Biosynthesis of indole-3-acetic acid in Streptomyces atroolivaceus and its changes during spore germination and mycelial growth. Microbios 67:159–164

    CAS  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    CAS  Google Scholar 

  • Ernstsen A, Sandberg G, Crozier A, Wheeler C (1987) Endogenous indoles and the biosynthesis and metabolism of indole-3-acetic acid in cultures of Rhizobium phaseoli. Planta 171:422–428

    CAS  PubMed  Google Scholar 

  • Evans WC, Smith BS, Fernley HN, Davies JI (1971) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122:543–551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faure D, Vereecke D, Leveau JH (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    CAS  Google Scholar 

  • Fedorov DN, Doronina NV, Trotsenko YA (2010) Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1. Biochemistry (Moscow) 75:1435–1443

    CAS  Google Scholar 

  • Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A et al (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci USA 102:11064–11069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V, Bellincampi D, Cervone D, De Lorenzo G (2008) Transgenic expression of a fungal endo-polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol 146:669–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Follin A, Inze D, Budar F (1985) Genetic evidence that the tryptophan 2-mono-oxygenase gene of Pseudomonas savastonoi is functionally equivalent to one of the T-DNA genes involved in plant tumour formation by Agrobacterium tumefaciens. Mol Gen Genet 201:178–185

    CAS  Google Scholar 

  • Frankenberger WT, Arshad M (1995) Auxins. In: Frankenberger WT, Arshad M (eds) Phytohormones in soils microbial production & function. Marcel Dekker Inc., New York, pp 17–136

    Google Scholar 

  • Fry S, Smith R, Renwick K, Martin D, Hodge S, Matthews K (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu J, Liu H, Li Y, Yu H, Li X, Xiao J et al (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galán B, Kolb A, Sanz JM, García JL, Prieto MA (2003) Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Res 31:6598–6609

    Google Scholar 

  • Ghosh AC, Basu PS (1997) Culture growth and IAa production by a microbial diazotropic symbiont of stem-nodules of the legume Aeschynomene aspera. Folia Microbiol 42:595–600

    CAS  Google Scholar 

  • Gieg LM, Otter A, Fedorak PM (1996) Carbazole degradation by Pseudomonas sp. LD2: metabolic characteristics and the identification of some metabolites. Environ Sci Technol 30:575–585

    CAS  Google Scholar 

  • Gilligan T, Yamada H, Nagasawa T (1993) Production of S-2-phenylpropionic acid from (R, S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328. Appl Microbiol Biotechnol 39:720–725

    CAS  PubMed  Google Scholar 

  • Glass NL, Kosuge T (1988) Role of indoleacetic acid-lysine synthetase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. savastanoi. J Bacteriol 170:2367–2373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaux Y (1998) Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant-Microbe Interact 11:156–162

    CAS  PubMed  Google Scholar 

  • Gómez-Manzo S, Chavez-Pacheco J, Contreras-Zentella M, Sosa-Torres M, Arreguín-Espinosa R, de Pérez la Mora M, Membrillo-Hernández J, Escamilla J (2010) Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c. J Bacteriol 192:5718–5724

    PubMed Central  PubMed  Google Scholar 

  • González-Lamothe R, El Oirdi M, Brisson N, Bouarab K (2012) The Conjugated Auxin Indole-3-Acetic Acid–Aspartic Acid Promotes Plant Disease Development. Plant Cell Online 24:762–777

    Google Scholar 

  • Gopalakrishna KN, Stewart BH, Kneen MM, Andricopulo AD, Kenyon GL, McLeish MJ (2004) Mandelamide hydrolase from Pseudomonas putida: characterization of a new member of the amidase signature family. Biochemistry (NY) 43:7725–7735

    Google Scholar 

  • Gopalan S (2008) Reversal of an immunity associated plant cell death program by the growth regulator auxin. BMC Res Notes 1:126

    PubMed Central  PubMed  Google Scholar 

  • Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manage Sci 66:113–120

    CAS  Google Scholar 

  • Gutierrez CK, Matsui GY, Lincoln DE, Lovell CR (2009) Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl Environ Microbiol 75:2253–2258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halliday KJ, Martínez-García JF, Josse EM (2009) Integration of light and auxin signaling. Cold Spring Harb Perspect Biol 1:1–17

    Google Scholar 

  • Harari A, Kigel J, Okon Y (1988) Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. Plant Soil 110:275–282

    CAS  Google Scholar 

  • Hartmann A, Singh M, Klingmüller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29:916–923

    CAS  Google Scholar 

  • Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50(1):553–590

    CAS  PubMed  Google Scholar 

  • He SY (1996) Elicitation of plant hypersensitive response by bacteria. Plant Physiol 112:865–869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heinz EB, Streit WR (2003) Biotin limitation in Sinorhizobium meliloti strain 1021 alters transcription and translation. Appl Environ Microbiol 69:1206–1213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howden AJ, Preston GM (2009) Nitrilase enzymes and their role in plant–microbe interactions. Microb Biotechnol 2:441–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howden AJM, Rico A, Mentlak T, Miguet L, Preston GM (2009) Pseudomonas syringae pv. syringae B728a hydrolyses indole-3-acetonitrile to the plant hormone indole-3-acetic acid. Mol Plant Pathol 10:857–865

    CAS  PubMed  Google Scholar 

  • Hsu S (2010) IAA production by Streptomyces scabies and its role in plant microbe interaction. Thesis Dissertation, Cornell University 1–54

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter WJ (1989) Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plantarum 76:31–36

    CAS  Google Scholar 

  • Ichige A, Walker GC (1997) Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J Bacteriol 179:209–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20:619–626

    CAS  PubMed  Google Scholar 

  • Imperlini E, Bianco C, Lonardo E, Camerini S, Cermola M, Moschetti G, Defez R (2009) Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production. Appl Microbiol Biotechnol 83:727–738

    CAS  PubMed  Google Scholar 

  • Jarabo-Lorenzo A, Perez-Galdona R, Vega-Hernandez M, Trujillo J, Leon-Barrios M (1998) Indole-3-acetic acid catabolism by bacteria belonging to the Bradyrhizobium genus. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht, p 484

    Google Scholar 

  • Jensen JB, Egsgaard H, Van Onckelen H, Jochimsen BU (1995) Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 177:5762–5766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeyanthi V (2013) Production optimization and characterization of phytohormone indole acetic acid by Pseudomonas fluorescence. Int J Pharm Biol Arch 4:514–520

    Google Scholar 

  • Johnson KD, Daniels D, Dowler MJ, Rayle DL (1974) Activation of Avena coleoptile cell wall glycosidases by hydrogen ions and auxin. Plant Physiol 53:224–228

    Google Scholar 

  • Joshi S, Ghosh I, Pokhrel S, Mädler L, Nau WM (2012) Interactions of amino acids and polypeptides with metal oxide nanoparticles probed by fluorescent indicator adsorption and displacement. ACS Nano 6:5668–5679

    CAS  PubMed  Google Scholar 

  • Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Polissiou MG, Gardiner PHE (2005) Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J Trace Elem Med Biol 19:91–95

    CAS  PubMed  Google Scholar 

  • Kang B, Yang K, Cho B, Han T, Kim I, Lee M, Anderson A, Kim Y (2006) Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas Chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr Microbiol 52:473–476

    CAS  PubMed  Google Scholar 

  • Kaper JM, Veldstra H (1958) On the metabolism of tryptophan by Agrobacterium tumefaciens. Biochim Biophys Acta 30:401–420

    CAS  PubMed  Google Scholar 

  • Karnwal A (2009) Production of indole acetic acid by fluorescent Pseudomonas in the presence of l-tryptophan and rice root exudates. J Plant Pathol 91:61–63

    CAS  Google Scholar 

  • Kato Y, Asano Y (2006) Molecular and enzymatic analysis of the “aldoxime–nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9. Appl Microbiol Biotechnol 70:92–101

    CAS  PubMed  Google Scholar 

  • Kato Y, Tsuda T, Asano Y (1999) Nitrile hydratase involved in aldoxime metabolism from Rhodococcus sp. strain YH3-3. Eur J Biochem 263:662–670

    CAS  PubMed  Google Scholar 

  • Kato Y, Nakamura K, Sakiyama H, Mayhew SG, Asano Y (2000) Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry 39:800–809

    CAS  PubMed  Google Scholar 

  • Kato Y, Yoshida S, Xie S, Asano Y (2004) Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771. J Biosci Bioeng 97:250–259

    CAS  PubMed  Google Scholar 

  • Kato Y, Yoshida S, Asano Y (2005) Polymerase chain reaction for identification of aldoxime dehydratase in aldoxime-or nitrile-degrading microorganisms. FEMS Microbiol Lett 246:243–249

    CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382

    CAS  PubMed  Google Scholar 

  • Kemper E, Wafenschmidt S, Weiler EW, Rausch T, Schröder J (1985) T-DNA-encoded auxin formation in crown-gall cells. Planta 163:257–262

    CAS  PubMed  Google Scholar 

  • Khamna S, Yokota A, Peberdy JF, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsia J Biosci 4:23–32

    Google Scholar 

  • Kim S, Oriel P (2000) Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzyme Microb Technol 27:492–501

    CAS  PubMed  Google Scholar 

  • Kim JI, Murphy AS, Baek D, Lee S, Yun D, Bressan RA, Narasimhan ML (2011a) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YC, Leveau J, McSpadden GBB, Pierson EA, Pierson LS, Ryu CM (2011b) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kittell BL, Helinski DR, Ditta GS (1989) Aromatic aminotransferase activity and indoleacetic acid production in Rhizobium meliloti. J Bacteriol 171:5458–5466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitten T, Kinscherf TG, McEvoy JL, Willis DK (1998) A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol Microbiol 28:917–929

    CAS  PubMed  Google Scholar 

  • Kiziak C, Conradt D, Stolz A, Mattes R, Klein J (2005) Nitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology 151:3639–3648

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Shimizu S (1994) Versatile nitrilases: nitrile-hydrolysing enzymes. FEMS Microbiol Lett 120:217–224

    CAS  Google Scholar 

  • Kobayashi M, Izui H, Nagasawa T, Yamada H (1993a) Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proc Natl Acad Sci 90:247–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi M, Komeda H, Nagasawa T, Nishiyama M, Horinouchi S, Beppu T, Yamada H, Shimizu S (1993b) Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Eur J Biochem 217:327–336

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Suzuki T, Fujita T, Masuda M, Shimizu S (1995) Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci USA 92:714–718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kochar M, Upadhyay A, Srivastava S (2011) Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens psd and plant growth regulation by hormone overexpression. Res Microbiol 162:426–435

    CAS  PubMed  Google Scholar 

  • Koga J, Adachi T, Hidaka H (1991) Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter Cloacae. Mol Gen Genet 226:10–16

    CAS  PubMed  Google Scholar 

  • Koga J, Syōono K, Ichikawa T, Adachi T (1994) Involvement of l-tryptophan aminotransferase in indole-3-acetic acid biosynthesis in Enterobacter cloacae. Biochim Biophys acta Protein Struct Mol Enzymol 1209:241–247

    Google Scholar 

  • Komeda H, Hori Y, Kobayashi M, Shimizu S (1996a) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci USA 93:10572–10577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996b) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc Natl Acad Sci USA 93:4267–4272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996c) A novel gene cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low molecular mass nitrile hydratase (l-NHase) induced by its reaction product. J Biol Chem 271:15796–15802

    CAS  PubMed  Google Scholar 

  • Krell T, Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Cadirci BH, García-Fontana C, Ramos JL (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13:1115–1124

    Google Scholar 

  • Kumar PR, Ram MR (2012) Production of indole acetic acid by Rhizobium isolates from Vigna trilobata (L) Verdc. P. Afr J Microbiol Res 6:5536–5541

    Google Scholar 

  • Kumavath RN, Ramana CV, Sasikala C (2010) l-Tryptophan catabolism by Rubrivivax benzoatilyticus JA2 occurs through indole 3-pyruvic acid pathway. Biodegradation 21:825–832

    CAS  PubMed  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini A, Alloni Go, Azevedo V, Bertero M, Bessieres P, Bolotin A, Borchert S (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    CAS  PubMed  Google Scholar 

  • Kurosawa N, Hirata T, Suzuki H (2009) Characterization of putative tryptophan monooxygenase from Ralstonia solanasearum. J Biochem 146:23–32

    CAS  PubMed  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300

    CAS  PubMed  Google Scholar 

  • Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146

    CAS  PubMed  Google Scholar 

  • Layh N, Parratt J, Willetts A (1998) Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Molec Catal B 5:467–474

    CAS  Google Scholar 

  • Lehmann T, Hoffmann M, Hentrich M, Pollmann S (2010) Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 89:895–905

    CAS  PubMed  Google Scholar 

  • Leveau JHJ, Gerards S (2008) Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiol Ecol 65:238–250

    CAS  PubMed  Google Scholar 

  • Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217

    Google Scholar 

  • Lin G, Chen H, Huang J, Liu T, Lin T, Wang S, Tseng C, Shu H (2012) Identification and characterization of an indigo-producing oxygenase involved in indole 3-acetic acid utilization by Acinetobacter baumannii. Antonie Van Leeuwenhoek 101:881–890

    CAS  PubMed  Google Scholar 

  • Lindahl R (1992) Aldehyde dehydrogenases and their role in carcinogenesis. Crit Rev Biochem Mol Biol 27:283–335

    CAS  PubMed  Google Scholar 

  • Liu P, Nester EW (2006) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci USA 103:4658–4662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Dong L, Cheng F, Xue Y, Wang Y, Ding J, Zheng Y, Shen Y (2011) Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10. J Agric Food Chem 59:11560–11570

    CAS  PubMed  Google Scholar 

  • Loper J, Schroth M (1986) Influence of bacterial sources of indole-3-acetic-acid on root elongation of sugar-beet. Phytopathology 76:386–389

    CAS  Google Scholar 

  • Malhotra M, Srivastava S (2008) An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 93:425–433

    CAS  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    CAS  Google Scholar 

  • Mandal S, Mondal K, Dey S, Pati B (2007) Optimization of cultural and nutritional conditions for indole-3-acetic acid production by a Rhizobium sp. isolated from root nodules of Vigna mungo. Res J Microbiol 2:239–246

    CAS  Google Scholar 

  • Mandal G, Bhattacharya S, Ganguly T (2009) Nature of interactions of tryptophan with zinc oxide nanoparticles and l-aspartic acid: a spectroscopic approach. Chem Phys Lett 472:128–133

    CAS  Google Scholar 

  • Manulis S, Valinski L, Gafni Y, Hershenhorn J (1991) Indole-3-acetic acid biosynthetic pathways in Erwinia herbicola in relation to pathogenicity on Gypsophila paniculata. Physiol Mol Plant Pathol 39:161–171

    CAS  Google Scholar 

  • Manulis S, Shafrir H, Epstein E, Lichter A, Barash I (1994) Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiol 140:1045–1050

    CAS  Google Scholar 

  • Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I (1998) Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant-Microbe Interact 11:634–642

    CAS  PubMed  Google Scholar 

  • Masuda Y (1990) Auxin-induced cell elongation and cell wall changes. The botanical magazine. Shokubutsu-gaku-zasshi 103:345–370

    CAS  Google Scholar 

  • Masuda Y, Kamisaka S (2000) Discovery of auxin. Discov Plant Biol 3:43–49

    CAS  Google Scholar 

  • Matsukawa E, Nakagawa Y, Iimura Y, Hayakawa M (2007) Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. 日本放線菌学会誌 21:32–39

    Google Scholar 

  • Mayaux J, Cerebelaud E, Soubrier F, Faucher D, Petre D (1990) Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. J Bacteriol 172:6764–6773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazumder P, Ghosh S, Sadhu S, Maiti T (2010) Production of indole acetic acid by Rhizobium sp. from root nodules of a leguminous herb Crotalaria saltiana Andr. in CULTURE. J Pure Appl Microbiol 4:109–116

    CAS  Google Scholar 

  • Mazzola M, White FF (1994) A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production. J Bacteriol 176:1374–1382

    CAS  PubMed Central  PubMed  Google Scholar 

  • McSteen P (2010) Auxin and monocot development. Cold Spring Harb Perspect Biol 2:1–27

    Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712–33717

    CAS  PubMed  Google Scholar 

  • Mino Y (1970) Studies on the destruction of indole-3-acetic acid by a species of Arthrobacter IV. decomposition products. Plant Cell Physiol 11:129–138

    CAS  Google Scholar 

  • Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13:638–649

    Google Scholar 

  • Monier J, Lindow S (2005) Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb Ecol 49:343–352

    PubMed  Google Scholar 

  • Morgenstern E, Okon Y (1987) The effect of Azospirillum brasilense and auxin on root morphology in seedlings of Sorghum bicolor and Sorghum sudanense. Arid Soil Res Rehabil 1:115–127

    Google Scholar 

  • Morris RO (1986) Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annu Rev Plant Physiol 37:509–538

    CAS  Google Scholar 

  • Mujahid M, Sasikala C, Ramana CV (2010) Aniline-induced tryptophan production and identification of indole derivatives from three purple bacteria. Curr Microbiol 61:285–290

    CAS  PubMed  Google Scholar 

  • Mujahid M, Sasikala C, Ramana CV (2011) Production of indole-3-acetic acid and related indole derivatives from l-tryptophan by Rubrivivax benzoatilyticus JA2. Appl Microbiol Biotechnol 89:1001–1008

    CAS  PubMed  Google Scholar 

  • Mutka AM, Fawley S, Tsao T, Kunkel BN (2013) Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid‐mediated defenses. Plant J 74:746–754

    Google Scholar 

  • Nagasawa T, Nakamura T, Yamada H (1990) ε-Caprolactam, a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. Arch Microbiol 155:13–17

    CAS  Google Scholar 

  • Nageshwar Y, Sheelu G, Shambhu RR, Muluka H, Mehdi N, Malik MS, Kamal A (2011) Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity. Bioprocess Biosyst Eng 34:515–523

    CAS  PubMed  Google Scholar 

  • Narayana KJ, Peddikotla P, Krishna PSJ, Yenamandra V, Muvva V (2009) Indole-3-acetic acid production by Streptomyces albidoflavus. J Biol Res 11:49–55

    Google Scholar 

  • Narumiya S, Takai K, Tokuyama T (1979) A new metabolic pathway of tryptophan initiated by tryptophan side chain oxidase. J Biol Chem 254:7007–7015

    CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Sci 312:436–439

    CAS  Google Scholar 

  • Nishiyama M, Horinouchi S, Kobayashi M, Nagasawa T, Yamada H, Beppu T (1991) Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J Bacteriol 173:2465–2472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oberhänsli T, Défago G, Haas D (1991) Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J Gen Microbiol 137:2273–2279

    PubMed  Google Scholar 

  • O’Mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O’Reilly C (2005) Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis strains AJ270 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 87:221–232

    Google Scholar 

  • Omay SH, Schmidt WA, Martin P, Bangerth F (1993) Indoleacetic acid production by the rhizosphere bacterium Azospirillum brasilense cd under in vitro conditions. Can J Microbiol 39:187–192

    CAS  Google Scholar 

  • Ona O, Van Impe J, Prinsen E, Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246:125–132

    CAS  PubMed  Google Scholar 

  • Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2:1–15

    Google Scholar 

  • Parales RE, Luu RA, Chen GY, Liu X, Wu V, Lin P, Hughes JG, Nesteryuk V, Parales JV, Ditty JL (2013) Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. Microbiology 159:1086–1096

    Google Scholar 

  • Park H, Kim H (2001) Genetic and structural organization of the aminophenol catabolic operon and its implication for evolutionary process. J Bacteriol 183:5074-5081

    Google Scholar 

  • Park JE, Seo PJ, Lee AK, Jung JH, Kim YS, Park CM (2007) An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl growth. Plant Cell Physiol 48:1236–1241

    CAS  PubMed  Google Scholar 

  • Patek M, Knoppova M, Volkova O, Pavlik A, Kubac D, Nesvera J, Martinkova L (2009) Organization, regulation and expression of nitrile degradation genes of Rhodococcus erythropolis. New Biotechnol 25:S104

    Google Scholar 

  • Patil Nita B, Milind Gajbhiye, Ahiwale Sangita S, Gunjal Aparna B, Kapadnis Balasaheb P (2011) Optimization of indole 3-acetic acid (IAA) production by Acetobacter diazotrophicus Ll isolated from sugarcane. Int J Environ Sci 2:295–302

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642

    CAS  PubMed  Google Scholar 

  • Patten CL, Blakney AJC, Coulson TJD (2012) Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 1–21

  • Pedraza RO, Ramírez-Mata A, Xiqui ML, Baca BE (2004) Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol Lett 233:15–21

    CAS  PubMed  Google Scholar 

  • Perozich J, Nicholas H, Wang B, Lindahl R, Hempel J (1999) Relationships within the aldehyde dehydrogenase extended family. Protein Sci 8:137–146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phi Q, Park Y, Ryu C, Park S, Ghim S (2008) Functional identification and expression of indole-3-pyruvate decarboxylase from Paenibacillus polymyxa E681. J Microbiol Biotechnol 18:1235–1244

    CAS  PubMed  Google Scholar 

  • Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C et al (2011) Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pilet P, Saugy M (1985) Effect of applied and endogenous indolyl-3-acetic acid on maize root growth. Planta 164:254–258

    CAS  PubMed  Google Scholar 

  • Pilet PE, Elliott MC, Moloney MM (1979) Endogenous and exogenous auxin in the control of root growth. Planta 146:405–408

    CAS  PubMed  Google Scholar 

  • Podar M, Eads JR, Richardson TH (2005) Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study. BMC Evol Biol 5:42

    PubMed Central  PubMed  Google Scholar 

  • Pollmann S, Müller A, Weiler EW (2006) Many roads lead to “auxin”: of nitrilases, synthases, and amidases. Plant Biol 8:326–333

    CAS  PubMed  Google Scholar 

  • Prasad S, Raj J, Bhalla T (2009) Purification of a hyperactive nitrile hydratase from resting cells of Rhodococcus rhodochrous PA-34. Indian J Microbiol 49:237–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, De Greef J, Schell J, Van Onckelen H (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 282:53–55

    CAS  PubMed  Google Scholar 

  • Prinsen E, Van Dongen W, Esmans EL, Van Onckelen HA (1997) HPLC linked electrospray tandem mass spectrometry: a rapid and reliable method to analyse indole-3-acetic acid metabolism in bacteria. J Mass Spectrom 32:12–22

    CAS  Google Scholar 

  • Proctor MH (1958) Bacterial dissimilation of indoleacetic acid: a new route of breakdown of the indole nucleus. Nature 181:1345

    Google Scholar 

  • Providenti MA, Wyndham RC (2001) Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl Environ Microbiol 67:3530–3541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajagopal R (1971) Metabolism of indole-3-acetaldehyde. III. Some characteristics of the aldehyde oxidase of Avena coleoptiles. Physiol Plant 24:272–281

    CAS  Google Scholar 

  • Rausch T, Minocha SC, Hilgenberg W, Kahl G (1985) l-Tryptophan metabolism in wound-activated and Agrobacterium tumefaciens-transformed potato tuber cells. Physiol Plant 63:335–344

    CAS  Google Scholar 

  • Reid AE, Kim SW, Seiner B, Fowler FW, Hooker J, Ferrieri R, Babst B, Fowler JS (2011) Radiosynthesis of C-11 labeled auxin (3-indolyl[1-11C]acetic acid) and its derivatives from gramine. J Labelled Compd Radiopharm 54:433–437

    CAS  Google Scholar 

  • Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL (2005) Multiple and interconnected pathways for l-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 187:7500–7510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    CAS  PubMed  Google Scholar 

  • Roper D, Fawcett T, Cooper R (1993) The Escherichia coli C homoprotocatechuate degradative operon: hpc gene order, direction of transcription and control of expression. Mol Gen Genet MGG 237:241-250

    Google Scholar 

  • Roy M, Basu P (1989) Production of 3-indoleacetic acid by a Rhizobium sp. from Mimosa pudica. Folia Microbiológica 34:120–126

    Google Scholar 

  • Ruckdäschel E, Kittell BL, Helinski D, Klingmüller U (1988) Aromatic amino acid aminotransferases of Azospirillum lipoferum and their possible involvement in IAA biosynthesis. In: Azospirillum IV. Springer, pp 49–53

  • Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by tyrR in Enterobacter cloacae UW5. Bacteriology 190:7200–7208

    CAS  Google Scholar 

  • Rzeznicka K, Schätzle S, Böttcher D, Klein J, Bornscheuer UT (2010) Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Appl Microbiol Biotechnol 85:1417–1425

    CAS  PubMed  Google Scholar 

  • Sachdev DP, Chaudhari HG, Kasture VM, Dhavale DD, Chopade BA (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47:993

    CAS  PubMed  Google Scholar 

  • Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus J, Cattolico L (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502

    CAS  PubMed  Google Scholar 

  • Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47:698–705

    CAS  PubMed  Google Scholar 

  • Sasirekha B, Shivakumar S (2012) Statistical optimization for improved indole-3-acetic acid (iaa) production by Pseudomonas aeruginosa and demonstration of enhanced plant growth promotion. J Soil Sci Plant Nutr 12:863–873

    Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, Tumlinson JH (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci 100:10552–10557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schröder G, Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391

    PubMed  Google Scholar 

  • Schütz A, Golbik R, Tittmann K, Svergun DI, Koch MHJ, Hübner G, Konig S (2003a) Studies on structure-function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur J Biochem 270:2322–2331

    Google Scholar 

  • Schütz A, Sandalova T, Ricagno S, Hübner G, König S, Schneider G (2003b) Crystal structure of thiamindiphosphate-dependent indolepyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid. Eur J Biochem 270:2312–2321

    Google Scholar 

  • Scott JC, Greenhut IV, Leveau JH (2013) Functional characterization of the bacterial iac genes for degradation of the plant hormone indole-3-acetic acid. J Chem Ecol 39:942–951

    CAS  PubMed  Google Scholar 

  • Sekine M, Ichikawa T, Kuga N, Kobayashi M, Sakurai A, Syōno K (1988) Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant Cell Physiol 29:867–874

    CAS  Google Scholar 

  • Sekine M, Watanabe K, Syono K (1989) Molecular cloning of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum. J Bacteriol 171:1718–1724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    CAS  PubMed  Google Scholar 

  • Sergeeva E, Hirkala DLM, Nelson LM (2007) Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil 297:1–13

    CAS  Google Scholar 

  • Shokri D, Emtiazi G (2010) Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by taguchi design. Curr Microbiol 61:217–225

    CAS  PubMed  Google Scholar 

  • Sitbon F, Sundberg B, Olsson O, Sandberg G (1991) Free and conjugated indoleacetic acid (IAA) contents in transgenic tobacco plants expressing the iaaM and iaaH IAA biosynthesis genes from Agrobacterium tumefaciens. Plant Physiol 95:480–485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sitbon F, Hennion S, Sundberg B, Anthony Little CH, Olsson O, Sandberg G (1992) Transgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol 99:1062–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smidt M, Kosuge T (1978) The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol Plant Pathol 13:203–213

    CAS  Google Scholar 

  • Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E et al (2010) Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol 51:524–536

    CAS  PubMed  Google Scholar 

  • Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song L, Yuan H, Coffey L, Doran J, Wang M, Qian S, O’Reilly C (2008) Efficient expression in E. coli of an enantioselective nitrile hydratase from Rhodococcus erythropolis. Biotechnol Lett 30:755–762

    CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  PubMed  Google Scholar 

  • Spartz AK, Gray WM (2008) Plant hormone receptors: new perceptions. Genes Dev 22:2139–2148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sridevi M, Yadav N, Mallaiah K (2008) Production of indole-acetic-acid by Rhizobium isolates from Crotalaria species. Res J Microbiol 3:276–281

    CAS  Google Scholar 

  • Stolz A, Trott S, Binder M, Bauer R, Hirrlinger B, Layh N, Knackmuss H (1998) Enantioselective nitrile hydratases and amidases from different bacterial isolates. J Molec Catal B 5:137–141

    CAS  Google Scholar 

  • Sudha M, Gowri RS, Prabhavathi P, Astapriya P, Devi SY, Saranya A (2012) Production and optimization of indole acetic acid by indigenous micro flora using agro waste as substrate. Pak J Biol Sci 15:39–43

    CAS  PubMed  Google Scholar 

  • Sunkar R, Li Y, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    CAS  PubMed  Google Scholar 

  • Surico G, Iacobellis NS, Sisto A (1985) Studies on the role of indole-3-acetic acid and cytokinins in the formation of knots on olive and oleander plants by Pseudomonas syringae pv. savastanoi. Physiol Plant Pathol 26:309–320

    CAS  Google Scholar 

  • Suzuki S, He Y, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143

    CAS  PubMed  Google Scholar 

  • Swain M, Ray R (2008) Optimization of cultural conditions and their statistical interpretation for production of indole-3-acetic acid by Bacillus subtilis CM5 using cassava fibrous residue. J Sci Ind Res 67:622–628

    CAS  Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiology. Benjamin Cummings Inc., San Francisco

    Google Scholar 

  • Tao Y, Ferrer J, Ljung K, Pojer F, Hong F, Long JA, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel J, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tauber M, Cavaco-Paulo A, Robra K, Gübitz GM (2000) Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. Appl Environ Microbiol 66:1634–1638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant-Microbe Interact 17:1153–1161

    CAS  PubMed  Google Scholar 

  • Thomashow LS, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci 81:5071–5075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra M (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tromas A, Perrot-Rechenmann C (2010) Recent progress in auxin biology. C R Biol 333:297–306

    CAS  PubMed  Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Onckelen H, Els P, Inzé D, Rüdeisheim P, Van Lijsebettens M, Follin A, Schell J, Van Montagu M, De Greef J (1986) Agrobacterium T-DNA gene codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198:357–360

    Google Scholar 

  • Van Puyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J et al (2011) Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol 61:723–728

    PubMed  Google Scholar 

  • Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vande Broek A, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J, Vanderleyden J (2005) Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Mol Plant-Microbe Interact 18:311–323

    CAS  PubMed  Google Scholar 

  • Vandeputte O, Öden S, Mol A, Vereecke D, Goethals K, Jaziri ME, Prinsen E (2005) Biosynthesis of auxin by the Gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol 71:1169–1177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vega-Hernández MC, León-Barrios M, Pérez-Galdona R (2002) Indole-3-acetic acid production from indole-3-acetonitrile in Bradyrhizobium. Soil Biol Biochem 34:665–668

    Google Scholar 

  • Walpola BC, Noh J, Kim CK, Kyung K, Kong W, Yoon M (2013) Optimization of indole-3-acetic acid by phosphate solubilization bacteria isolated from waste mushroom bed of Agaricus bisporus. J Mushroom Sci Prod 11:53–62

    Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    CAS  PubMed  Google Scholar 

  • Wang H, Sun H, Wei D (2013) Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction. BMC Biotechnol 13:14

    PubMed Central  PubMed  Google Scholar 

  • Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE (1998) The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor σ(s) and the stress response in Pseudomonas fluorescens pf-5. J Bacteriol 180:6635–6641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie S, Kato Y, Komeda H, Yoshida S, Asano Y (2003) A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry 42:12056–12066

    CAS  PubMed  Google Scholar 

  • Xie B, Xu K, Zhao HX, Chen SF (2005) Isolation of transposon mutants from Azospirillum brasilense Yu62 and characterization of genes involved in indole-3-acetic acid biosynthesis. FEMS Microbiol Lett 248:57–63

    CAS  PubMed  Google Scholar 

  • Yagi K, Chujo T, Nojiri H, Omori T, Nishiyama M, Yamane H (2001) Evidence for the presence of DNA-binding proteins involved in regulation of the gene expression of indole-3-pyruvic acid decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis in Azospirillum lipoferum FS. Biosci Biotechnol Biochem 65:1265–1269

    CAS  PubMed  Google Scholar 

  • Yamada T, Palm CJ, Brooks B, Kosuge T (1985) Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad USA 82:6522–6526

    CAS  Google Scholar 

  • Yang S, Zhang Q, Guo J, Charkowski AO, Glick BR, Ibekwe AM et al (2007) Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol 73:1079–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoyama MT, Carlson JR (1981) Production of Skatole and para-Cresol by a Rumen Lactobacillus sp. Appl Environ Microbiol 41:71–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida A, Rzhetsky A, Hsu LC, Chang C (1998) Human aldehyde dehydrogenase gene family. Eur J Biochem 25:549–557

    Google Scholar 

  • Yuan Z, Haudecoeur E, Faure D, Kerr KF, Nester EW (2008) Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and γ-amino butyric acid reveals signalling cross-talk and Agrobacterium–plant co-evolution. Cell Microbiol 10:2339–2354

    CAS  PubMed  Google Scholar 

  • Zaghian S, Shokri D, Emtiazi G (2012) Co-production of a UV-stable bacteriocin-like inhibitory substance (BLIS) and indole-3-acetic acid hormone (IAA) and their optimization by Taguchi design in Bacillus pumilus. Ann Microbiol 62:1189–1197

    CAS  Google Scholar 

  • Zhang J, Wang M, Sun H, Li X, Zhong L (2009) Isolation and characterization of Rhodococcus ruber CGMCC3090 that hydrolyzes aliphatic, aromatic and heterocyclic nitriles. Afr J Biotechnol 8:5467–5475

    CAS  Google Scholar 

  • Zhang Z, Xu J, He Y, Ouyang L, Liu Y (2011) Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-mandelic acid production. Bioprocess Biosyst Eng 34:315–322

    CAS  PubMed  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao M, Han Y, Feng Y, Li F, Wang W (2012) Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep 31:671–685

    CAS  PubMed  Google Scholar 

  • Zheng Y, Chen J, Liu Z, Wu M, Xing L, Shen Y (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biotechnol 77:985–993

    CAS  PubMed  Google Scholar 

  • Zhu D, Mukherjee C, Biehl ER, Hua L (2007) Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol 129:645–650

    CAS  PubMed  Google Scholar 

  • Zimmer W, Bothe H (1988) The phytohormonal interactions between Azospirillum and wheat. Plant Soil 110:239–247

    CAS  Google Scholar 

  • Zimmer W, Hundeshagen B, Niederau E (1994) Demonstration of the indolepyruvate decarboxylase gene homologue in different auxin-producing species of the Enterobacteriaceae. Can J Microbiol 40:1072–1076

    CAS  PubMed  Google Scholar 

  • Zimmer W, Wesche M, Timmermans L (1998) Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: sequencing and functional analysis of the gene locus. Curr Microbiol 36:327–331

    CAS  PubMed  Google Scholar 

  • Zúñiga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutiérrez RA, González B (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant-Microbe Interact 26:546–553

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Lorv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duca, D., Lorv, J., Patten, C.L. et al. Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek 106, 85–125 (2014). https://doi.org/10.1007/s10482-013-0095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0095-y

Keywords

Navigation