Skip to main content
Log in

Influence of magnetic field and Hall currents on blood flow through a stenotic artery

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A micropolar model for blood simulating magnetohydrodynamic flow through a horizontally nonsymmetric but vertically symmetric artery with a mild stenosis is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the horizontal shape of the stenosis can easily be changed just by varying a parameter referred to as the shape parameter. Flow parameters, such as velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region, and its magnitude at the maximum height of the stenosis (stenosis throat), have been computed for different shape parameters, the Hartmann number and the Hall parameter. This shows that the resistance to flow decreases with the increasing values of the parameter determining the stenosis shape and the Hall parameter, while it increases with the increasing Hartmann number. The wall shear stress and the shearing stress on the wall at the maximum height of the stenosis possess an inverse characteristic to the resistance to flow with respect to any given value of the Hartmann number and the Hall parameter. Finally, the effect of the Hartmann number and the Hall parameter on the horizontal velocity is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Craig I J D, Watson P G. Magnetic reconnection solutions based on a generalized Ohm’s law[J]. Solar Phys, 2003, 214(1):131–150.

    Article  Google Scholar 

  2. Stud V K, Sephon G S, Mishra R K. Pumping action on blood flow by a magnetic field[J]. Bull. Math Biol, 1977, 39:385–390.

    Google Scholar 

  3. Agrawal H L, Anwaruddin B. Peristaltic flow of blood in a branch[J]. Ranchi Univ Math J, 1984, 15:111–121.

    MATH  MathSciNet  Google Scholar 

  4. Bharali A, Borkakati A K. The effect of Hall currents on MHD flow and heat transfer between two parallel porous plates[J]. Appl Sci Res, 1982, 39(2):155–165.

    Article  MATH  Google Scholar 

  5. Asghar S, Parveen S, Hanif S, Siddiqui A M, Hayat T. Hall effects on the unsteady hydromagnetic flows of an Oldroyd-B fluid[J]. Int J Eng Sci, 2003, 41(6):609–619.

    Article  MathSciNet  Google Scholar 

  6. Megahed A A, Komy S R, Afify A A. Similarity analysis in magnetohydrodynamics: Hall effects on free convection flow and mass transfer past a semi-infinite vertical flat plate[J]. Non-Linear Mech, 2003, 38(4):513–520.

    Article  MATH  Google Scholar 

  7. Mohyuddin M R, Ashraf E E. Inverse solutions for a second-grade fluid for porous medium channel and Hall current effects[J]. Proc Indian Acad Sci (Math Sci), 2004, 114(1):79–96.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hayat T, Naz R, Asghar S. Hall effects on unsteady duct flow of a non-Newtonian fluid in a porous medium[J]. Appl Math Comp, 2004, 57(1):103–114.

    Article  MathSciNet  Google Scholar 

  9. Hayat T, Wang Y, Hutter K. Hall effects on the unsteady hydromagnetic oscillatory flow of a second-grade fluid[J]. Non-Linear Mech, 2004, 39(6):1027–1037.

    Article  MATH  Google Scholar 

  10. Eringen A C. Theory of micropolar fluids[J]. J Math Mech, 1966, 16:11.

    MathSciNet  Google Scholar 

  11. Agarwal R S, Dhanapal C. Numerical solution to the flow of a micropolar fluid between porous walls of different permeability[J]. Int J Eng Sci, 1987, 25:325–336.

    Article  MATH  Google Scholar 

  12. Haldar K. Effects of the shape of stenosis on the resistance to blood flow through an artery[J]. Bull Math Biol, 1985, 47(4):545–550.

    Google Scholar 

  13. Srivistava L M. Flow of couple stress fluid through stenotic blood vessels[J]. J Biomech, 1985, 18(7):479–485.

    Article  Google Scholar 

  14. Srivastava V P. Arterial blood flow through a nonsymmetrical stenosis with applications[J]. Jpn. J Appl Phys, 1995, 34(12A):6539–6545.

    Article  Google Scholar 

  15. Ang K C, Mazumdar J N. Mathematical modeling of three dimensional flow through an asymmetric arterial stenosis[J]. Math Comp Modelling, 1997, 25(1):19–29.

    Article  MATH  Google Scholar 

  16. Srivastava V P, Saxena M. Suspension model for blood flow through stenotic arteries with a cell-free plasma layer[J]. Math Biosci, 1997, 39:79–102.

    Article  Google Scholar 

  17. Chakravarty S, Mandal P K. Two-dimentional blood flow through tapered arteries under stenotic conditions[J]. Int J Non-Linear Mech, 2000, 35:779–793.

    Article  MATH  Google Scholar 

  18. Liu B, Tang D. A numerical simulation of viscous flows in collapsible tubes with stenosis[J]. Appl. Numer Math, 2000, 32(1):87–101.

    Article  MATH  MathSciNet  Google Scholar 

  19. El-Shahed M. Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration[J]. Appl Math Comp, 2003, 138(2/3):479–488.

    Article  MATH  MathSciNet  Google Scholar 

  20. Jung H, Choi J W, Park C G. Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery[J]. Korea-Australia Rheology Journal, 2004, 16(2):101–108.

    Google Scholar 

  21. Liu G T, Wang X J, Ai B Q, Liu L G. Numerical study of pulsating flow through a tapered artery with stenosis[J]. Chin J Phys, 2004, 42(4-I):401–409.

    Google Scholar 

  22. Mandal P K. An unsteady of non-Newtonian blood flow through tapered arteries with a stenosis[J]. Int J Nonlinear Mech, 2004, 40:151–164.

    Article  Google Scholar 

  23. Pralhad R N, Schulz D H. Modeling of arterial stenosis and its applications to blood diseases[J]. Math Biosci, 2004, 190(2):203–220.

    Article  MATH  MathSciNet  Google Scholar 

  24. Young D F. Effect of a time dependent stenosis of flow through a tube[J]. J Eng Ind, 1968, 90:248–254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. S. Mekheimer.

Additional information

Communicated by ZHOU Zhe-wei

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mekheimer, K.S., El Kot, M.A. Influence of magnetic field and Hall currents on blood flow through a stenotic artery. Appl. Math. Mech.-Engl. Ed. 29, 1093–1104 (2008). https://doi.org/10.1007/s10483-008-0813-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-0813-x

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation