Skip to main content
Log in

Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this study, the effects of magnetic field and nanoparticle on the Jeffery-Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell’s electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different α, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A*:

constant parameter

B 0 :

magnetic field (wb·m−2)

F :

general nonlinear operator

Lu :

linear term

Ru :

remained of linear operator

A :

Adomian polynominal

f(η):

dimensionless velocity

Ha :

Hartmann number

P :

pressure term

Re :

Reynolds number

r,θ :

cylindrical coordinates

U max :

maximum value of velocity

u,v :

velocity components along x and y axes, respectively

α :

angle of channel

η :

dimensionless angle

θ :

any angle

ρ :

density

ϕ :

nanoparticle volume fraction

µ :

dynamic viscosity

υ :

kinematic viscosity

β :

constant

:

condition at infinity

nf:

nanofluid

f:

base fluid

s:

nano-solid-particles

References

  1. Jeffery, G. B. The two-dimensional steady motion of a viscous fluid. Phil. Mag., 6, 455–465 (1915)

    Google Scholar 

  2. Hamel, G. Spiralförmige Bewgungen zäher Flüssigkeiten, Jahresber. Deutsch. Math. Verein., 25, 34–60 (1916)

    MATH  Google Scholar 

  3. Bansal, L. Magnetofluiddynamics of Viscous Fluids, Jaipur Publishing House, Jaipur, India (1994)

    Google Scholar 

  4. Cha, J. E., Ahn, Y. C., and Kim, M. H. Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes. Flow Measurement and Instrumentation, 12(5–6), 329–339 (2002)

    Article  Google Scholar 

  5. Tendler, M. Confinement and related transport in extrap geometry. Nuclear Instruments and Methods in Physics Research, 207(1–2), 233–240 (1983)

    Article  Google Scholar 

  6. Makinde, O. D. and Motsa, S. S. Hydromagnetic stability of plane Poiseuille flow using Chebyshev spectral collocation method. J. Ins. Math. Comput. Sci., 12(2), 175–183 (2001)

    Google Scholar 

  7. Makinde, O. D. Magneto-hydrodynamic stability of plane-Poiseuille flow using multi-deck asymptotic technique. Math. Comput. Model., 37(3–4), 251–259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Anwari, M., Harada, N., and Takahashi, S. Performance of a magnetohydrodynamic accelerator using air-plasma as working gas. Energy Conversion Management, 4, 2605–2613 (2005)

    Article  Google Scholar 

  9. Homsy, A., Koster, S., Eijkel, J. C. T., Ven der Berg, A., Lucklum, F., Verpoorte, E., and de Rooij, N. F. A high current density DC magnetohydrodynamic (MHD) micropump. Royal Society of Chemistry’s Lab on a Chip, 5, 466–471 (2005)

    Article  Google Scholar 

  10. Kakaç, S. and Pramuanjaroenkij, A. Review of convective heat transfer enhancement with nanofluids. International Communications in Heat and Mass Transfer, 52(13–14), 3187–3196 (2009)

    MATH  Google Scholar 

  11. Aminossadati, S. M. and Ghasemi, B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure. Eur. J. Mech. B/Fluids, 28, 630–640 (2009)

    Article  MATH  Google Scholar 

  12. Yacob, N., Ishak, A., Nazar, R., and Pop, I. Falkner-Skan problem for a static and moving wedge with prescribed surface heat flux in a nanofluid. International Communications in Heat and Mass Transfer, 38, 149–153 (2011)

    Article  Google Scholar 

  13. Adomian, G. A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135(2), 501–544 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ghosh, S., Roy, A., and Roy, D. An adaptation of Adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators. Comput. Meth. Appl. Mech. Engrg., 196, 1133–1153 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jafari, H. and Daftardar-Gejji, V. Revised Adomian decomposition method for solving a system of non-linear equations. Appl. Math. Comput., 175, 1–7 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Allan, F. M. and Syam, M. I. On the analytic solutions of the nonhomogeneous Blasius problem. J. Comput. Appl. Math., 182, 362–371 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hashim, I. Adomian decomposition method for solving BVPs for fourth-order integro-differential equations. J. Comput. Appl. Math., 193, 658–664 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hashim, I. Comments on a new algorithm for solving classical Blasius equation. J. Comput. Appl. Math., 182, 362–371 (2005)

    Article  MathSciNet  Google Scholar 

  19. Kechil, S. A. and Hashim, I. Non-perturbative solution of free-convective boundary-layer equation by Adomian decomposition method. Phys. Lett. A., 363, 110–114 (2007)

    Article  MATH  Google Scholar 

  20. Arslanturk, C. A decomposition method for fins efficiency of convective straight fins with temperature-dependent thermal conductivity. International Communications in Heat and Mass Transfer, 32, 831–841 (2005)

    Article  Google Scholar 

  21. Pamuk, S. Solution of the porous media equation by Adomian’s decomposition method. Phys. Lett. A, 344, 184–188 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Daftardar-Gejji, V. and Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl., 316, 753–763 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lesnic, D. Decomposition methods for non-linear non-characteristic Cauchy heat problems. Commun. Nonlinear Sci. Numer. Simul., 10, 581–596 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Luo, X. G. A two-step Adomian decomposition method. Appl. Math. Comput., 170, 570–583 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, X. A modification of the Adomian decomposition method for a class of nonlinear singular boundary value problems. J. Comput. Appl. Math., 180, 377–389 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kaya, D. and Yokus, A. A comparison of partial solutions in the decomposition method for linear and nonlinear partial differential equations. Math. Comput. Simul., 60, 507–512 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ganji, Z. Z., Ganji, D. D., and Rostamiyan, Y. Solitary wave solutions for a time-fraction generalized Hirota-Satsuma coupled KdV equation by an analytical technique. Applied Mathematical Modelling, 33(7), 3107–3113 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Esmaeilpour, M. and Ganji, D. D. Solution of the Jeffery-Hamel flow problem by optimal homotopy asymptotic method. Computers and Mathematics with Applications, 59, 3405–3411 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Moghimi, S. M., Ganji, D. D., Bararnia, H., Hosseini, M., and Jalaal, M. Homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem. Computers and Mathematics with Applications, 61(8), 2213–2216 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Babazadeh, H., Ganji, D. D., and Akbarzade, M. He’s energy balance method to evaluate the effect of amplitude on the natural frequency in nonlinear vibration systems. Journal of Electromagnetic Waves and Applications (JEMWA) Progress in Electromagnetic Research, 4, 143–154 (2008)

    Google Scholar 

  31. Ganji, D. D., Babazadeh, H., Jalaei, M. H., and Tashakkorian, H. Application of He’s variational iteration methods for solving nonlinear BBMB equations and free vibrations of systems. Acta Appl. Math., 106(3), 359–367 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Si, X. H., Zheng, L. C., Zhang, X. X., and Chao, Y. Perturbation solution to unsteady flow in a porous channel with expanding or contracting walls in the presence of a transverse magnetic field. Appl. Math. Mech.-Engl. Ed., 31(2), 151–158 (2010) DOI 10.1007/s10483-010-0203-z

    Article  MATH  MathSciNet  Google Scholar 

  33. Ganji, D. D., Rokni, H. B., Sfahani, M. G., and Ganji, S. S. Approximate traveling wave solutions for coupled shallow water. Advances in Engineering Software, 41, 956–961 (2010)

    Article  MATH  Google Scholar 

  34. Tari, H., Ganji, D. D., and Babazadeh, H. The application of He’s variational iteration method to nonlinear equations arising in heat transfer. Phys. Lett. A, 363, 213–217 (2007)

    Article  MATH  Google Scholar 

  35. Ganji, S. S., Ganji, D. D., Babazadeh, H., and Sadoughi, N. Application of amplitude-frequency formulation to nonlinear oscillation system of the motion of a rigid rod rocking back. Mathematical Method in Applied Sciences, 10, 151–159 (2009)

    Google Scholar 

  36. Yuan, P. X. and Li, Y. Q. Primary resonance of multiple degree-of-freedom dynamic systems with strong non-linearity using the homotopy analysis method. Appl. Math. Mech.-Engl. Ed., 31(10), 1293–1304 (2010) DOI 10.1007/s10483-010-1362-6

    Article  MATH  MathSciNet  Google Scholar 

  37. Ganji, S. S., Ganji, D. D., Karimpour, S., and Babazadeh, H. Applications of He’s homotopy perturbation method to obtain second-order approximations of coupled two-degree-of-freedom system. International Journal of Nonlinear Science and Numerical Simulation, 10(3), 303–312 (2009)

    Google Scholar 

  38. Ganji, D. D., Rokni, H. B., Rafiee, M. H., Imani, A. A., Esfandyaripour, M., and Sheikholeslami, M. Reconstruction of variational iteration method for boundary value problems in structural engineering and fluid mechanics. International Journal of Nonlinear Dynamics in Engineering and Sciences, 3, 1–10 (2011)

    Google Scholar 

  39. Sheikholeslami, M., Ashorynejad, H. R., Ganji, D. D., and Kolahdooz, A. Investigation of rotating MHD viscous flow and heat transfer between stretching and porous surfaces using analytical method. Mathematical Problems in Engineering (2011) DOI 10.1155/2011/258734

  40. Ganji., D. D., Nezhad, H. R. A., and Hasanpour, A. Effect of variable viscosity and viscous dissipation on the Hagen-Poiseuille flow and entropy generation. Numerical Methods for Partial Differential Equations, 27(3), 529–540 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Rokni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R. et al. Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Appl. Math. Mech.-Engl. Ed. 33, 25–36 (2012). https://doi.org/10.1007/s10483-012-1531-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1531-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation