Skip to main content
Log in

Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This article studies the Soret and Dufour effects on the magnetohydrodynamic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructed by the homotopic procedure. The results for velocities, temperature, and concentration fields are displayed and discussed. Numerical values of the skin friction coefficient, the Nusselt number, and the Sherwood number for different values of physical parameters are constructed and analyzed. The convergence of the series solutions is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crane, L. J. Flow past a stretching plate. Journal of Applied Mathematics and Physics (ZAMP), 21, 645–647 (1970)

    Article  Google Scholar 

  2. Hassani, M., Tabar, M. M., Nemati, H., Domairry, G., and Noori, F. An analytical solution for boundary layer flow of a nanofluid past a stretching sheet. International Journal of Thermal Sciences, 50, 2256–2263 (2011)

    Article  Google Scholar 

  3. Kazem, S., Shaban, M., and Abbasbandy, S. Improved analytical solutions to a stagnation-point flow past a porous stretching sheet with heat generation. Journal of the Franklin Institute, 348, 2044–2058 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hayat, T., Javed, T., and Abbas, Z. Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space. International Journal of Heat and Mass Transfer, 51, 4528–4534 (2008)

    Article  MATH  Google Scholar 

  5. Rahman, G. M. A. Thermal-diffusion and MHD for Soret and Dufour’s effects on Hiemenz flow and mass transfer of fluid flow through porous medium onto a stretching surface. Physica B, 405, 2560–2569 (2010)

    Article  Google Scholar 

  6. Yao, B. and Chen, J. Series solution to the Falkner-Skan equation with stretching boundary. Applied Mathematics and Computation, 208, 156–164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, T., Zhang, J., and Yao, S. A new family of unsteady boundary layers over a stretching surface. Applied Mathematics and Computation, 217, 3747–3755 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yao, S., Fang, T., and Zhang, J. Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Communications in Nonlinear Science and Numerical Simulation, 16, 752–760 (2011)

    Article  MATH  Google Scholar 

  9. Hayat, T., Awais, M., Qasim, M., and Hendi, A. A. Effects of mass transfer on the stagnation point flow of an upper-convected Maxwell (UCM) fluid. International Journal of Heat and Mass Transfer, 54, 3777–3782 (2011)

    Article  MATH  Google Scholar 

  10. Hayat, T., Qasim, M., and Abbas, Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet. Zeitschrift für Naturforschung, 65a, 231–239 (2010)

    Google Scholar 

  11. Ahmad, A. and Asghar, S. Flow of a second grade fluid over a sheet stretching with arbitrary velocities subject to a transverse magnetic field. Applied Mathematics Letters, 24, 1905–1909 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Muhaimina, Kandasamy, R., and Hashim, I. Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction. Nuclear Engineering and Design, 240, 933–939 (2010)

    Article  Google Scholar 

  13. Kandasamy, R., Periasamy, K., and Prabhu, K. K. S. Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects. International Journal of Heat and Mass Transfer, 48, 4751–4761 (2005)

    Google Scholar 

  14. Mrill, E. W., Benis, A. M., Gilliland, E. R., Sherwood, T. K., and Salzman, E. W. Pressure flow relations of human blood hollow fibers at low flow rates. Journal of Applied Physiology, 20, 954–967 (1965)

    Google Scholar 

  15. McDonald, D. A. Blood Flows in Arteries, 2nd ed., Arnold, London (1974)

  16. Liao, S. J. Beyond Perturbation: Introduction to Homotopy Analysis Method, CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  17. Vosughi, H., Shivanian, E., and Abbasbandy, S. A new analytical technique to solve Volterra’s integral equations. Mathematical Methods in the Applied Sciences, 34, 1243–1253 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abbasbandy, S. and Shirzadi, A. Homotopy analysis method for a nonlinear chemistry problem. Studies in Nonlinear Sciences, 1, 127–132 (2010)

    Google Scholar 

  19. Ziabakhsh, Z., Domairry, G., Bararnia, H., and Babazadeh, H. Analytical solution of flow and diffusion of chemically reactive species over a nonlinearly stretching sheet immersed in a porous medium. Journal of the Taiwan Institute of Chemical Engineers, 41, 22–28 (2010)

    Article  Google Scholar 

  20. Rashidi, M. M., Pour, S. A. M., and Abbasbandy, S. Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Communications in Nonlinear Science and Numerical Simulation, 16, 1874–1889 (2011)

    Article  Google Scholar 

  21. Hayat, T., Shehzad, S. A., Qasim, M., and Obaidat, S. Steady flow ofMaxwell fluid with convective boundary conditions. Zeitschrift für Naturforschung, 66a, 417–422 (2011)

    Article  Google Scholar 

  22. Hayat, T., Shehzad, S. A., Qasim, M., and Obaidat, S. Radiative flow of a Jeffery fluid in a porous medium with power law heat flux and heat source. Nuclear Engineering and Design, 243, 15–19 (2012)

    Article  Google Scholar 

  23. Hayat, T. and Qasim, M. Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis. International Journal of Heat and Mass Transfer, 53, 4780–4788 (2010)

    Article  MATH  Google Scholar 

  24. Yao, B. Approximate analytical solution to the Falkner-Skan wedge flow with the permeable wall of uniform suction. Communications in Nonlinear Science and Numerical Simulation, 14, 3320–3326 (2009)

    Article  Google Scholar 

  25. Rashidi, M. M. and Pour, S. A. M. Analytic approximate solutions for unsteady boundary-layer flow and heat transfer due to a stretching sheet by homotopy analysis method. Nonlinear Analysis: Modelling and Control, 15, 83–95 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Liao, S. J. An optimal homotopy-analysis approach for strongly nolinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15, 2003–2016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vyas, P. Radiative MHD flow over a non-isothermal stretching sheet in a porous medium. Applied Mathematical Sciences, 4, 2475–2484 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Turkyilmazoglu, M. Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet. International Journal of Thermal Sciences, 50, 2264–2276 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hayat.

Additional information

Project supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University of Saudi Arabia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayat, T., Shehzad, S.A. & Alsaedi, A. Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid. Appl. Math. Mech.-Engl. Ed. 33, 1301–1312 (2012). https://doi.org/10.1007/s10483-012-1623-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1623-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation